Recommended and maximum allowable volumes for rectal and intravaginal administration of drugs of different animal species

Original article

УДК 615.076.9
DOI: 10.57034/2618723X-2023-01-04

A.V. Chernyshova*,
senior assistant of department of specific toxicology and pharmacodynamics,
E.A. Roshchina,
researcher of department of specific toxicology and pharmacodynamics,
L.I. Alekseeva,
junior researcher of toxicology group,
A.E. Katelnikova,
Candidate of Medical Sciences, head of department of specific toxicology and pharmacodynamics,
M.N. Makarova,
Doctor of Medical Sciences, director,

Research and manufacturing company “Home оf Pharmacy”,
188663, Russia, Leningrad oblast, Vsevolozhskiy district, Kuzmolovskiy t.s., Zavodskaya st. 3–245.

* Е-mail: [email protected]

Keywords: rectal administration intravaginal administration preclinical studies volume of administration


The study was performed without external funding.

For citation:

Chernyshova A.V., Roshchina E.A. , Alekseeva L.I., Katelnikova A.E., Makarova M.N. Recommended and maximum allowable volumes for rectal and intravaginal administration of drugs of different animal species. Laboratory Animals for Science. 2023; 1.


Rectal and intravaginal routes of administration are often used in clinical practice, in some cases they may be more preferable for certain groups of patients: in pediatric practice, the rectal route of administration is used, for antimicrobials for the treatment of diseases of the pelvic organs in women, the intravaginal route is used. Preclinical studies on animals are required for registration of medicines. Before the implementation of research work, the work of the bioethical commission is carried out, this in the course of its activities conducts a projects’ examination of these studies. The key stage of the discussion of the commission is the consideration of the project for compliance with the principles of “3Rs” (principles of humane experimental methodology). To date there are no uniform requirements, regional and international standards that would contain recommendations on the permissible volumes of administration by rectal and intravaginal routes to laboratory animals. The volumes calculated in this study will help to reduce the number of animals in the experiment, as well as minimize pain and distress. The aim of this study was to determine the recommended and maximum volumes for rectal and intravaginal routes of administration for animals of the following species: Syrian hamster, guinea pig, Wistar rat, ICR-CD1 mouse, gerbil, rabbit (Soviet chinchilla), ferret, cat (Russian blue), dog (beagle), pygmy pig, marmoset (Callithrix jacchus) and cynomolgus monkey (Macaca fascicularis). Commercially available suppositories for rectal and vaginal administration were used as test objects. Depending on the type of animal, suppositories were administered in the finished dosage form or in the form of a melt. The introduction was performed while fixing the animals, sedation was not used. The criteria for classifying the selected volumes as acceptable or maximum were indicators of clinical observation of animals, assessed in points. As a result of the work carried out, recommended (not causing concern or pain) and maximum allowable (causing some concern or short-term mild pain) volumes for rectal and vaginal administration were established.

Conflict of interest

M.N. Makarova is a member of the editorial board of Laboratory animals for science. The other authors declare no conflict of interest requiring disclosure in this article.

Authors contribution

A.V. Chernyshova — analysis of scientific and methodological literature, collection and analysis of data, statistical processing of data, writing, editing and finalizing the text of the manuscript, responsibility for all aspects of the work related to the reliability of the data.
Е.А. Roshchina — analysis of scientific and methodological literature, collection and analysis of data, work with literary sources, writing the text of the article.
L.I. Alekseeva — collection and analysis of data.
A.Е. Katelnikova — a nalysis of scientific and methodological literature, manuscript editing.
M.N. Makarova — research idea, manuscript editing, the final version of manuscript approval.


  1. Hua S. Physiological and Pharmaceutical Considerations for Rectal Drug Formulations // Frontiers in Pharmacology. 2019. Vol. 10. DOI: 10.3389/fphar.2019.01196.
  2. Brunaugh A.D. et al. Essential Pharmaceutics // Germany: Springer Nature, 2019. 193 p.
  3. Рыбакова А.В., Макарова М.Н., Кухаренко А.Е. и др. Существующие требования и подходы к дозированию лекарственных средств лабораторным животным // Ведомости Научного центра экспертизы средств медицинского применения. 2018. Т. 8. № 4. С. 207–217. [Rybakova A.V., Makarova M.N., Kuharenko A.E. et. al. Sushchestvuyushchie trebovaniya i podhody k dozirovaniyu lekarstvennyh sredstv laboratornym zhivotnym // Vedomosti Nauchnogo centra ekspertizy sredstv medicinskogo primeneniya. 2018. Vol. 8. N. 4. P. 207–217. (In Russ.)].
  4. Monticello T.M., Jones T., Dambach D. et al. Current nonclinical testing paradigm enables safe entry to first-in-human clini­cal trials: the IQ consortium nonclinical to clinical translatio­nal database // Toxicology and Applied Pharmacology. 2017. Vol. 334. P. 100–109. DOI: 10.1016/j.taap.2017.09.006.
  5. Clark M., Steger-Hartmann T. A big data approach to the concordance of the toxicity of pharmaceuticals in animals and humans // Regulatory Toxicology and Pharmacology. 2018. Vol. 96. P. 94–105. DOI: 10.1016/j.yrtph.2018.04.018.
  6. Olson H., Betton G., Robinson D. et al. Concordance of the toxicity of pharmaceuticals in humans and in ani­mals // Regulatory Toxicology and Pharmacology. 2000. Vol. 32. P. 56–67. DOI: 10.1006/rtph.2000.1399.
  7. D’Cruz O.J., Waurzyniak B., Uckun F.M. Subchronic (13‑week) toxicity studies of intravaginal administration of spermicidal vanadocene dithiocarbamate in mice // Contraception. 2001. Vol. 64. N. 3. P. 177–185. DOI: 10.1016/s0010-7824(01)00245-1.
  8. Ho H., Li Y., Nie G. Inhibition of embryo implantation in mice through vaginal administration of a proprotein convertase 6 inhibitor // Reproductive Biology. 2014. Vol. 14. N. 2. P. 155–159. DOI: 10.1016/j.repbio.2013.12.008.
  9. Liu Y., Yang F., Feng L. et al. In vivo retention of poloxamer-­based in situ hydrogels for vaginal application in mouse and rat models // Acta Pharmaceutica Sinica B. 2017. Vol. 7. N. 4. P. 502–509. DOI: 10.1016/j.apsb.2017.03.003.
  10. Mahjabeen S. et al. Influence of the estrus cycle of the mouse on the disposition of SHetA2 after vaginal administration // European Journal of Pharmaceutics and Biopharmaceutics. 2018. Vol. 130. P. 272–280. DOI: 10.1016/j.ejpb.2018.07.004.
  11. Nagatomi A., Mishima M., Tsuzuki O. et al. Utility of a rectal suppository containing the antiepileptic drug zonisamide // Biological and Pharmaceutical Bulletin. 1997. Vol. 20. N. 8. P. 892–986. DOI: 10.1248/bpb.20.892.
  12. Sakai M., Hobara N., Hokama N. et al. Increased bioavailability of tacrolimus after rectal administration in rats // Bio­logical and Pharmaceutical Bulletin. 2004. Vol. 27. N. 9. P. 1480–1482. DOI: 10.1248/bpb.27.1480.
  13. Chen Y., Chen Y., Liu W.L. et al. Therapeutic effects of rectal administration of muscovite on experimental colitis in rats // Journal of Gastroenterology and Hepatology. 2009. Vol. 24. N. 5. P. 912–919. DOI: 10.1111/j.1440-1746.2008.05721.x.
  14. Okada H., Yamazaki I., Sakura Y. et al. Desensitization of gonadotropin-releasing response following vaginal consecutive administration of leuprolide in rats // Journal of Pharmacobio-Dynamics. 1983. Vol. 6. N. 7. P. 512–522. DOI: 10.1248/bpb1978.6.512. PMID: 6417315.
  15. Auletta C.S. Vaginal and Rectal Administration // Journal of the American College of Toxicology. 1994. Vol. 13. N. 1. P. 48–63. DOI: 10.3109/10915819409140655.
  16. Ichikawa K., Ohata, I., Mitomi M. et al. Rectal absorption of insulin suppositories in rabbits // Journal of Pharmacy and Pharmacology. 1980. Vol. 32. N. 1. P. 314–318. DOI: 10.1111/j.2042-7158.1980.tb12927.x.
  17. D’Cruz O.J., Shih M.‑J., Yiv S.H. et al. Synthesis, characte­rization and preclinical formulation of a dual-action phenyl phosphate derivative of bromo-methoxy zidovudine (compound WHI-07) with potent anti-HIV and spermicidal activities // Molecular Human Reproduction 1999. Vol. 5. N. 5. P. 421–432. DOI: 10.1093/molehr/5.5.421.
  18. Nuttall J.P., Thake D. C, Lewis M.G. et al. Concentrations of dapivirine in the rhesus macaque and rabbit following once daily intravaginal administration of a gel formulation of [14C] dapivirine for 7 days // Antimicrobial Agents and Chemotherapy. 2008. Vol. 52. N. 3. P. 909–914. DOI: 10.1128/AAC.00330-07.
  19. Eckstein P., Jackson M.C. et al. Comparison of vaginal tole­rance tests of spermicidal preparations in rabbits and monkeys // Journal of Reproductive and Fertility. 1969. Vol. 20. N. 1. P. 85–93. DOI: 10.1530/jrf.0.0200085.
  20. Chollet J., Mermelstein F. et al. Vaginal tamoxifen for treatment of vulvar and vaginal atrophy: Pharmacokinetics and local tolerance in a rabbit model over 28 days // International Journal of Pharmaceutics. 2019. Vol. 570. DOI: 10.1016/j.ijpharm.2019.118691.
  21. Han X., Zhang Y. et al. Pharmacokinetic study of ginsenoside Re after vaginal administration in rabbits by UPLC-MS/MS determination // Chinese Herbal Medicines. 2018. Vol. 10. N. 3. P. 304–309. DOI: 10.1016/j.chmed.2018.03.014.
  22. D’Cruz O.J., Waurzyniak B., Uckun F.M. Antiretroviral spermicide WHI-07 prevents vaginal and rectal transmission of feline immunodeficiency virus in domestic cats // Antimicrobial Agents and Chemotherapy. 2004. Vol. 48. N. 4. P. 1082–1088. DOI: 10.1128/AAC.48.4.1082-1088.2004.
  23. Schroers M., Meyer-Lindenberg A., Reese S. et al. Pharmacokinetics of low-dose and high-dose buprenorphine in cats after rectal administration of different formulations // Journal of Feline Medicine and Surgery. 2019. Vol. 21. N. 10. P. 938–943. DOI: 10.1177/1098612X18810933.
  24. Bishop S.A., Stokes C.R., Gruffydd-Jones T.J. et al. Vaginal and rectal infection of cats with feline immunodeficiency virus // Veterinary Microbiology. 1996. Vol. 51. N. 3–4. P. 217–227. DOI: 10.1016/0378-1135(96)00038-7.
  25. Patton D.L., Cosgrove Sweeney Y.T. et al. Preclinical safety and efficacy assessments of dendrimer-based (SPL7013) microbicide gel formulations in a nonhuman primate model // Antimicrobial Agents and Chemotherapy. 2006. Vol. 50. N. 5. P. 1696–1700. DOI: 10.1128/AAC.50.5.1696-1700.2006.
  26. Parikh U.M., Dobard C., Sharma S. et al. Complete protection from repeated vaginal simian-human immunodeficiency virus exposures in macaques by a topical gel containing tenofovir alone or with emtricitabine // Journal of Virology. 2009. Vol. 83. N. 20. P. 10358–10365. DOI: 10.1128/JVI.01073-09.
  27. Pereira L.E., Clark M.R., Friend D.R. et al. Pharmacokinetic and safety analyses of tenofovir and tenofovir-emtricita­bine vaginal tablets in pigtailed macaques // Antimicrobial Agents and Chemotherapy. 2014. Vol. 58. N. 5. P. 2665–2674. DOI: 10.1128/AAC.02336-13.
  28. Dobard C.W., Makarova N., West-Deadwyler R. et al. Efficacy of Vaginally Administered Gel Containing Emtricitabine and Tenofovir Against Repeated Rectal Simian Human Immunodeficiency Virus Exposures in Macaques // The Journal of Infectious Diseases. 2018. Vol. 218. N. 8. P. 1284–1290. DOI: 10.1093/infdis/jiy301.
  29. Martlé V., Devreese M., Rauch S. et al. Comparative pharmacokinetics of imepitoin after oral and rectal administration in healthy dogs // The Veterinary Journal. 2020. Vol. 259. DOI: 10.1016/j.tvjl.2020.105459.

Received: 2023-12-23
Reviewed: 2023-01-10
Accepted for publication: 2023-01-30

You may be interested