Variability of blood biochemical parameters and establishment of reference intervals in preclinical studies. Part 6: Macaca fascicularis

Original article

УДК 001.891.53
DOI: 10.29296/2618723X-2022-02-02

M.V. Miroshnikov*, Candidate of Medical Sciences, Head of the Laboratory of Biochemistry and Hematology, https://orcid.org/0000-0002-9828-3242;
K.T. Sultanova, Candidate of Medical Sciences, https://orcid.org/0000-0002-9846-8335;
M.A. Kovaleva, Candidate of Biological Sciences, Head of the scientific and methodological group, https://orcid.org/0000-0002-0740-9357;
M.N. Makarova, MD, Director, https://orcid.org/0000-0003-3176-6386

Research and manufacturing company «Home оf Pharmacy»,
188663, Russia, Leningrad oblast, Vsevolozhskiy district, Kuzmolovskiy t. s., Zavodskaya st. 3-245

* e-mail: [email protected]


Keywords: non-human primate Macaca fascicularis biomedical research biochemical parameters serum

Acknowledgements

The study was performed without external funding.


For citation:

Miroshnikov M.V., Sultanova K.T., Kovaleva M.A., Makarova M.N. Variability of blood biochemical parameters and establishment of reference intervals in preclinical studies. Part 6: Macaca fascicularis. Laboratory Animals for Science. 2022; 2. https://doi.org/10.29296/2618723X-2022-02-02

Abstract

Despite numerous attempts to find alternative models to evaluate the efficacy and safety of drugs, it is currently impossible to completely abandon research on large laboratory animals. Macaca fascicularis play an important role in preclinical studies in the study of vaccines, the development of pharmaceuticals, and toxicological studies. Genetic proximity to humans causes the similarity of the two species according to physiological and biochemical criteria, the pathogenesis of certain diseases and the mechanism of action of various chemicals on the body. These animals are susceptible to age-related pathologies characteristic of humans, such as cardiovascular diseases, behavioral disorders, Alzheimer's disease, obesity, type 2 diabetes mellitus. The use of cynomolgus macaque in preclinical studies mediates the need for laboratory control of the internal state of animals. The paper reviewed and analyzed the reference values of some biochemical parameters of the blood of Macaca fascicularis. To form the intervals, we used data obtained from intact animals on the basis of research and manufacturing company «Home оf Pharmacy». The normal ranges of such parameters as creatinine, urea, aspartate aminotransferase, alanine aminotransferase, cholesterol, triglycerides, total protein, albumin, globulins, albumin/globulin ratio, glucose, lactate dehydrogenase and creatine kinase obtained during the work were comparable between male and female primates. The exception is alkaline phosphatase — the reference range of the indicator under consideration in males was much wider than in females. When comparing the reference intervals obtained at «Home оf Pharmacy» with the intervals of Macaca fascicularis from literary sources, it is shown that, in general, the ranges of the indicators under consideration are comparable, but there are also differences that may be caused by animal stress, methods of processing and blood sampling, nutrition, climate, conditions of detention and age. The obtained reference ranges of biochemical blood parameters of cynomolgus macaque are necessary in preclinical studies to create a high-quality basis for future experimental studies using Macaca fascicularis, more accurate analysis of the information obtained and monitoring of animal health.

Conflict of interest

The authors declare no conflicts of interest.

Authors contribution

M.V. Miroshnikov — analysis of scientific literature and guidelines, writing, editing and revision of the text, carrying responsibility for all aspects of the study related to the reliability of the data.
K.T. Sultanova — writing and editing of the text, summarising the study results, preparation of the tables.
M.A. Kovaleva — аnalysis of scientific literature and guidelines, revision of the text.
M.N. Makarova — idea, editing of the text, editing of the text.

References

  1. Rosso M.C., Badino P., Ferrero G. et al. Biologic data of cynomolgus monkeys maintained under laboratory conditions // PloS one. – 2016. – Vol. 11. – N. 6. – P. doi:10.1371/journal.pone.0157003
  2. Ebeling M., Küng E., See A. et al. Genome-based analysis of the nonhuman primate Macaca fascicularis as a model for drug safety assessment // Genome research. – 2011. – Vol. 21. – N. 10. – P. 1746–1756. doi: 10.1101/gr.123117.111.
  3. Prescott M. J., Clark C., Dowling W. E., Shurtleff A. C. Opportunities for Refinement of Non-Human Primate Vaccine Studies // Vaccines. – 2021. – Vol. 9. – N.3. – P. 284. doi: 10.3390/vaccines9030284
  4. Park H.K., Cho J.W., Lee B.S. et al. Reference values of clinical pathology parameters in cynomolgus monkeys (Macaca fascicularis) used in preclinical studies // Laboratory Animal Research. – 2016. – Vol. 32. – N. 2. – P. 79–86. doi: 10.5625/lar.2016.32.2.79.
  5. Huh J.W., Kim Y.H., Park S.J. et al. Large-scale transcriptome sequencing and gene analyses in the crab-eating macaque (Macaca fascicularis) for biomedical research //BMC genomics. – 2012. – Vol. 13. – N. 1. – P. 1–12. doi: 10.1186/1471-2164-13-163
  6. Uno Y., Uehara S., Yamazaki H. Utility of non-human primates in drug development: Comparison of non-human primate and human drug-metabolizing cytochrome P450 enzymes // Biochemical pharmacology. – 2016. – Vol. 121. – P. 1–7.
  7. Yan G., Zhang G., Fang X. et al. Genome sequencing and comparison of two nonhuman primate animal models, the cynomolgus and Chinese rhesus macaques //Nature biotechnology. – 2011. – Vol. 29. – N. 11. – P. 1019–1023. doi: 10.1038/nbt.1992
  8. Bussiere J.L. Species selection considerations for preclinical toxicology studies for biotherapeutics // Expert Opinion on Drug Metabolism & Toxicology. – 2008. – Vol. 4. – N. 7. – P. 871–877. doi: 10.1517/17425255.4.7.871.
  9. Yoshida T., Sato M., Ohtoh K., Honjo S. Effects of aging on the in vivo release of thyrotropin (TSH), triiodothyronine, and thyroxine induced by TSH-releasing hormone in the cynomolgus monkey (Macaca fascicularis) // Endocrinology. – 1989. – Vol. 124. – N. 3. – P. 1287–1293. doi: 10.1210/endo-124-3-1287.
  10. Cefalu W. T., Wang Z. Q., Bell-Farrow A. D. et al. Caloric restriction and cardiovascular aging in cynomolgus monkeys (Macaca fascicularis): metabolic, physiologic, and atherosclerotic measures from a 4‑year intervention trial // The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. – 2004. – Vol. 59. – N. 10. – P. B1007 – B1014. doi: 10.1093/gerona/59.10. b1007.
  11. Shively C.A., Register T.C., Friedman D.P. et al. Social stress-associated depression in adult female cynomolgus monkeys (Macaca fascicularis) // Biological psychology. – 2005. – Vol. 69. – N. 1. – P. 67–84. doi: 10.1016/j.biopsycho.2004.11.006.
  12. Kusumaputri V.A., Darusman H.S., Agungpriyono D.R. PAT-6 Brain Histopathology of Cynomolgus Monkey (Macacafascicularis) with Memory Impairment Indicated by Alzheimer Type Neurodegenerative Disease. Proc. of the 20th FAVA CONGRESS & The 15th KIVNAS PDHI, Bali Nov. 1–3. – 2018. – P. 141–142.
  13. Zijlmans D.G., Maaskant A., Sterck E.H., Langermans J.A. Retrospective Evaluation of a Minor Dietary Change in Non-Diabetic Group-Housed Long-Tailed Macaques (Macaca fascicularis) // Animals. – 2021. – Vol. 11. – N. 9. – P. 2749. doi: 10.3390/ani11092749.
  14. Wagner J.D., Cline J.M., Shadoan M.K. et al. Naturally occurring and experimental diabetes in cynomolgus monkeys: a comparison of carbohydrate and lipid metabolism and islet pathology // Toxicologic pathology. – 2001. – Vol. 29. – N. 1. – P. 142–148. doi: 10.1080/019262301301418955.
  15. Tipper C., Sodroski J.G. Contribution of glutamine residues in the helix 4–5 loop to capsid-capsid interactions in simian immunodeficiency virus of macaques // Journal of Virology. – 2014. – Vol. 88. – N. 18. – P. 10289–10302. doi: 10.1128/JVI.01388-14.
  16. Antony J.M., MacDonald K.S. A critical analysis of the cynomolgus macaque, Macaca fascicularis, as a model to test HIV-1/SIV vaccine efficacy // Vaccine. – 2015. – Vol. 33. – N. 27. – P. 3073–3083. doi: 10.1016/j.vaccine.2014.12.004.
  17. El Mubarak H.S., Yüksel S., van Amerongen G. et al. Infection of cynomolgus macaques (Macaca fascicularis) and rhesus macaques (Macaca mulatta) with different wild-type measles viruses // Journal of General Virology. – 2007. – Vol. 88. – N. 7. – P. 2028–2034.
  18. Dupinay T., Gheit T., Roques P. et al. Discovery of naturally occurring transmissible chronic hepatitis B virus infection among Macaca fascicularis from Mauritius Island //Hepatology. – 2013. – Vol. 58. – N. 5. – P. 1610–1620.
  19. Müller S.F., König A., Döring B. et al. Characterisation of the hepatitis B virus cross-species transmission pattern via Na+/taurocholate co-transporting polypeptides from 11 New World and Old World primate species //PLoS One. – 2018. – Vol. 13. – N. 6. – P. e0199200.
  20. Alfson K.J., Avena L.E., Beadles M.W. et al. Intramuscular exposure of Macaca fascicularis to low doses of low passage-or cell culture-adapted Sudan virus or Ebola virus //Viruses. – 2018. – Vol. 10. – N. 11. – P. 642.
  21. Finch C.L., Crozier I., Lee J.H. et al. Characteristic and quantifiable COVID-19-like abnormalities in CT-and PET/CT-imaged lungs of SARS-CoV-2-infected crab-eating macaques (Macaca fascicularis) //BioRxiv. – 2020.
  22. Warit S., Billamas P., Makhao N. et al. Detection of tuberculosis in cynomolgus macaques (Macaca fascicularis) using a supplementary Monkey Interferon Gamma Releasing Assay (mIGRA) //Scientific reports. – 2020. – Vol. 10. – N. 1. – P. 1–11.
  23. Testerman T.L., Semino-Mora C., Cann J.A. et al. Both diet and Helicobacter pylori infection contribute to atherosclerosis in pre-and postmenopausal cynomolgus monkeys //Plos one. – 2019. – Vol. 14. – N. 9. – P. e0222001.
  24. Sricharern W., Kaewchot S., Kaewmongkol S. et al. Detection and genetic characterization of “Candidatus Mycoplasma haemomacaque” infection among long-tailed macaques (Macaca fascicularis) in Thailand using broad-range nested polymerase chain reaction assay //Veterinary World. – 2021. – Vol. 14. – N.4. – P. 943.
  25. Chabot J. A., Stegall M. D., Weber C. et al. Pancreatic islet allo-and xenotransplantation in cynomolgus monkeys //Transplantation proceedings. – 1989. – Vol. 21. – N. 1 Pt 3. – P. 2739–2740.
  26. Schröder C., Azimzadeh A. M., Wu G. et al. Anti-CD20 treatment depletes B-cells in blood and lymphatic tissue of cynomolgus monkeys //Transplant immunology. – 2003. – Vol. 12. – N. 1. – P. 19–28.
  27. Van Esch E., Cline J. M., Buse E. et al. Summary comparison of female reproductive system in human and the cynomolgus monkey (Macaca fascicularis) //Toxicologic Pathology. – 2008. – Vol. 36. – N. 7. Suppl. – P. 171S – 172S.
  28. Luetjens C. M., Weinbauer G. F. Functional assessment of sexual maturity in male macaques (Macaca fascicularis) // Regulatory Toxicology and Pharmacology. – 2012. – Vol. 63. – N. 3. – P. 391–400. doi: 10.1016/j. yrtph. 2012.05.003.
  29. Ramaswamy S., Marshall G. R., McNeilly A. S., Plant T. M. Dynamics of the follicle-stimulating hormone (FSH) – inhibin B feedback loop and its role in regulating spermatogenesis in the adult male rhesus monkey (Macaca mulatta) as revealed by unilateral orchidectomy // Endocrinology. – 2000. – Vol. 141. – N. 1. – P. 18–27. doi: 10.1210/endo. 141.1.7276.
  30. Mecklenburg L., Luetjens C. M., Weinbauer G. F. Toxicologic pathology forum*: opinion on sexual maturity and fertility assessment in long-tailed macaques (Macaca fascicularis) in nonclinical safety studies // Toxicologic Pathology. – 2019. – Vol. 47. – N. 4. – P. 444–460. doi: 10.1177/0192623319831009.
  31. Fan S., Ding X., Rao P. et al. Multimodal imaging of the retina and choroid in healthy Macaca fascicularis at different ages //Graefe»s Archive for Clinical and Experimental Ophthalmology. – 2019. – Vol. 257. – N. 3. – P. 455–463. doi: 10.1007/s00417‑019‑04237‑x
  32. Burbacher T. M., Grant K. S., Shen D. D. et al. Chronic maternal methanol inhalation in nonhuman primates (Macaca fascicularis): reproductive performance and birth outcome //Neurotoxicology and teratology. – 2004. – Vol. 26. – N 5. – P. 639–650.
  33. Tukey J. W. et al. Exploratory data analysis. – 1977. – Vol. 2. – P. 131–160.
  34. Xie L., Xu F., Liu S. et al. Age-and sex-based hematological and biochemical parameters for Macaca fascicularis //PloS one. – 2013. – Vol. 8. – N. 6. – P. 64892.
  35. Landi M. S., Kissinger J. T., Campbell S. A. et al. The effects of four types of restraint on serum alanine aminotransferase and aspartate aminotransferase in the Macaca fascicularis //Journal of the American College of Toxicology. – 1990. – Vol. 9. – N. 5. – P. 517–523.
  36. Dirksen K., Verzijl T., Van den Ingh T.S.G.A.M. et al. Hepatocyte-derived microRNAs as sensitive serum biomarkers of hepatocellular injury in Labrador retrievers //The Veterinary Journal. – 2016. – Vol. 211. – P. 75–81.
  37. Hall R. L., Everds N. E. Factors affecting the interpretation of canine and nonhuman primate clinical pathology //Toxicologic pathology. – 2003. – Vol. 31. – N. 1_Suppl. – С. 6–10.
  38. Nalca A., Livingston V. A., Garza N. L. et al. Experimental infection of cynomolgus macaques (Macaca fascicularis) with aerosolized monkeypox virus //PloS one. – 2010. – Vol. 5. – N. 9. – P. e12880.
  39. Wang B., Qiao W., Ye W. et al. Comparison of continuous glucose monitoring between dexcom G4 platinum and HD–XG systems in nonhuman primates (Macaca fascicularis) //Scientific reports. – 2017. – Vol. 7. – N. 1. – P. 1–10.
  40. Rudel L. L. Genetic factors influence the atherogenic response of lipoproteins to dietary fat and cholesterol in nonhuman primates //Journal of the American College of Nutrition. – 1997. – Vol. 16. – N. 4. – P. 306–312.
  41. Mubiru J. N., Garcia-Forey M., Higgins P. B. et al. A preliminary report on the feeding of cynomolgus monkeys (Macaca fascicularis) with a high-sugar high-fat diet for 33 weeks //Journal of medical primatology. – 2011. – Vol. 40. – N. 5. – P. 335–341.
  42. Mao Y., Zhao Y., Zhang X. et al. Risk and safety assessment of exogenous human brain natriuretic peptide in cynomolgus monkeys (Macaca fascicularis) – A subchronic study //Regulatory Toxicology and Pharmacology. – 2010. – Vol. 56. – N. 2. – P. 148–155.
  43. Gozalo A. S., Chavera A., Montoya E. J. et al. Relationship of creatine kinase, aspartate aminotransferase, lactate dehydrogenase, and proteinuria to cardiomyopathy in the owl monkey (Aotus vociferans) //Journal of medical primatology. – 2008. – Vol. 37. – P. 29–38.
  44. Chiba K., Ishizaka T., Yoshimatsu Y. et al. Comprehensive analysis of cardiac function, blood biomarkers and histopathology for milrinone-induced cardiotoxicity in cynomolgus monkeys //Journal of Pharmacological and Toxicological Methods. – 2020. – Vol. 103. – P. 106870.
  45. Конвертор единиц измерения используемых в лабораторной и медицинской практике в единицы международной системы СИ. – URL.: http://unitslab.com/ru (дата обращения: 01.2022 г.) [Konvertor edinits izmereniya ispol'zuemykh v laboratornoi i meditsinskoi praktike v edinitsy mezhdunarodnoi sistemy SI. – URL.: http://unitslab.com/ru (data obrashcheniya: 01.2022 g.) (In Russ.)].
  46. Saleh M., Sharma K., Kalsi R. et al. Chemical pancreatectomy treats chronic pancreatitis while preserving endocrine function in preclinical models //The Journal of clinical investigation. – 2021. – Vol. 131. – N. 3.
  47. Bakker J., de la Garza M. A. Naturally Occurring Endocrine Disorders in Non-Human Primates: A Comprehensive Review // Animals. – 2022. – Vol. 12. – N. 4. – P. 407. doi: 10.3390/ani12040407.
  48. Mubiru J. N., Garcia-Forey M., Higgins P. B. et al. A preliminary report on the feeding of cynomolgus monkeys (Macaca fascicularis) with a high-sugar high-fat diet for 33 weeks // Journal of medical primatology. – 2011. – Vol. 40. – N. 5. – P. 335–341. doi: 10.1111/j. 1600–0684.2011.00495. x.
  49. Sun Y., Guo C., Yuan L. et al. Cynomolgus monkeys with spontaneous Type-2‑diabetes-mellitus-like pathology develop alpha-synuclein alterations reminiscent of prodromal Parkinson»s disease and related diseases // Frontiers in neuroscience. – 2020. – Vol. 14. – P. 63.
  50. Weingand K. W. Atherosclerosis research in cynomolgus monkeys (Macaca fascicularis) // Experimental and molecular pathology. – 1989. – Vol. 50. – N. 1. – P. 1–15. doi: 10.1016/0014–4800 (89) 90052‑x.
  51. Urano E., Okamura T., Ono C. et al. COVID-19 cynomolgus macaque model reflecting human COVID-19 pathological conditions // Proceedings of the National Academy of Sciences. – 2021. – Vol. 118. – N. 43. doi: 10.1073/pnas. 2104847118.
  52. Finch C. L., Crozier I., Lee J. H. et al. Characteristic and quantifiable COVID-19‑like abnormalities in CT-and PET/CT-imaged lungs of SARS-CoV-2‑infected crab-eating macaques (Macaca fascicularis) // BioRxiv. – 2020. doi: 10.1101/2020.05.14.096727.
  53. Koga T., Kanefuji K., Nakama K. Individual reference intervals of hematological and serum biochemical parameters in cynomolgus monkeys // International journal of toxicology. – 2005. – Vol. 24. – N 5. – P. 377–385. doi: 10.1080/10915810500208058.
  54. Matsumoto K., Akagi H., Ochiai T. et al. Comparative blood values of Macaca mulatta and Macaca fascicularis // Experimental Animals. – 1980. – Vol. 29. – N. 3. – P. 335–340.
  55. Koo B. S. et al. Reference values of hematological and biochemical parameters in young-adult cynomolgus monkey (Macaca fascicularis) and rhesus monkey (Macaca mulatta) anesthetized with ketamine hydrochloride // Laboratory animal research. – 2019. – Vol. 35. – N. 1. – P. 1–6. doi: 10.1186/s42826‑019‑0006‑0.
  56. Tattersall I., Jamieson R. Hematological and serum biochemical values in free-ranging Macaca fascicularis of mauritius: Possible diabetes mellitus and correlation with nutrition // American journal of primatology. – 1981. – Vol. 1. – N. 4. – P. 413–419. doi: 10.1002/ajp.1350010406.
  57. Wang H., Niu Y. Y., Si W., Li Y. J., Yan Y. Reference data of clinical chemistry, haematology and blood coagulation parameters in juvenile cynomolgus monkeys (Macaca fascicularis) // Veterinarni Medicina. – 2012. – Vol. 57. – N. 5. – P. 233–238.
  58. Лившиц В. М., Сидельникова В. И. Биохимические анализы в клинике: справ.-3‑е изд. – 2011. [Livshits V. M., Sidel'nikova V. I. Biokhimicheskie analizy v klinike: sprav.-3‑e izd. – 2011. (In Russ.)]
  59. ГОСТ Р 53022.2–2008 Технологии лабораторные клинические. Требования к качеству клинических лабораторных исследований. Часть 2. Оценка аналитической надежности методов исследования (точность, чувствительность, специфичность) М., 2008. [GOST R 53022.2–2008 Tekhnologii laboratornye klinicheskie. Trebovaniya k kachestvu klinicheskih laboratornyh issledovanij. CHast' 2. Ocenka analiticheskoj nadezhnosti metodov issledovaniya (tochnost', chuvstvitel'nost', specifichnost') M., 2008. (In Russ.)].

Received: 2022-02-09
Reviewed: 2022-03-30
Accepted for publication: 2022-04-26

You may be interested