Modeling the depressive-like state of learned helplessness in rats of different stocks

Original article

УДК 599.322/.324+616.8-008.6
DOI: 10.29296/2618723X-2022-02-03

S.O. Kotelnikova, PhD, Senior Researcher, Laboratory of Psychopharmacology, https://orcid.org/0000-0001-7083-5298
M.S. Sadovsky, PhD student, Laboratory of Pharmacogenetics, https://orcid.org/0000-0001-6499-4292
V.A. Kraineva*, PhD, Scientific Secretary, https://orcid.org/0000-0003-1493-4392
E.A. Waldman**, Doctor of Medical Sciences, Professor, Head of the Department for the Training of Scientific and Pedagogical Personnel, http://orcid.org/0000-0001-9716-499X

Federal State Budgetary Institution «Research Zakusov Institute of Pharmacology»,
125315 Moscow, Baltiyskaya str. 8, Russia;

* e-mail: [email protected]; ** [email protected]


Keywords: learned helplessness depressive-like state rats Sprague Dawley rats Wistar outbred rats

Acknowledgements

The study was carried out in accordance with the state order of the V. V. Zakusov» (topic 0521-2019-0002). The experiments were carried out in compliance with the norms of working with animals and approved by the Commission on Biomedical Ethics of the V.V. Zakusov» (protocol No. 5 dated March 19, 2020). The authors declare no conflict of interest.


For citation:

Kotelnikova S.O., Sadovsky M.S., Kraineva V.A., Waldman E.A. Modeling the depressive-like state of learned helplessness in rats of different stocks. Laboratory Animals for Science. 2022; 2. https://doi.org/10.29296/2618723X-2022-02-03

Abstract

The «learned helplessness» (LH) model in rats is widely used to assess depression-like behavior and the effects of antidepressants. A comparison of the state of learned helplessness parameters in outbred, Wistar and Sprague Dawley rats was assessed on the days 3 and 14 after exposure to inescapable electric shock. In outbred albino rats on the 3‑d day 34% of animals reached the LH criterion — 25 and more escape failures among the 30 trials, on the day 14 it was 22% LH rats. In Sprague Dawley on the day 3 it was 25% and on the day 14–28% LH rats. In Wistar rats there were no animals which reached the criterion of LH. The latency of first escape and number of escape failures in both LH outbred and Sprague Dawley rats on the day 3 was significantly higher, and the number of escapes lower than in control group. On the day 14 only in Sprague Dawley rats all these differences remained to be significant. In LH outbred rats on the day 14 there were no differences with control group in first escape latency. The parameters of behavior of the control groups in outbred and Sprague Dawley rats did not differ. In our study Sprague Dawley rats were more predisposed to the development and retention of depressive-like LH state compared to outbred albino rats. However, the percentage of LH rats in both tested groups was not high enough and it is a limitation for the use of LH model for studying the effects of antidepressants. It was suggested that the division of rats according to the type of activity in stress conditions and then use only low-active animals for development of the LH depressive-like state could increase the effectiveness of the method.

Conflict of interest

The authors declare no conflicts of interest.

Authors contribution

S.O. Kotelnikova, M.S. Sadovsky — Development of study design, collection, analysis and interpretation of experimental data, statistical processing of data, preparation of material for publication.
V.A. Kraineva — analysis and interpretation of experimental data, preparation of the text for publication.
E.A. Valdman — scientific management of the work as a whole, approval of the final version of the article for publication.

References

  1. Hao Y., Ge H., Sun M., Gao Y. Selecting an Appropriate Animal Model of Depression // Int. J. Mol. Sci. 2019. Vol. 20. N. 19. P. 4827. DOI: 10.3390/ijms20194827.
  2. Ушакова В.М., Горлова А.В., Зубков Е.А. и др. Экспериментальные модели депрессивного состояния // Журнал высшей нервной деятельности им. И.П. Павлова. 2019. Т. 69. № 2. С. 230–247. DOI: 10.1134/S0044467719020114 [Ushakova V.M., Gorlova A.V., Zubkov E.A. et al. Experimental models of depressive disorder // Zhurnal Vysshei Nervnoi Deyatelnosti imeni I. P. Pavlova. 2019. Vol. 69. N. 2. P. 230–247] (in Russ).
  3. Cryan J.F., Markou A., Lucki I. Assessing antidepressant activity in rodents: recent developments and future needs // Trends in Pharmacological Sciences. 2002. Vol. 23. N. 5. P. 238–245. DOI: 10.1016/s0165-6147(02)02017-5.
  4. Czéh B., Fuchs E., Wiborg O., Simon M. Animal models of major depression and their clinical implications // Prog. Neuropsychopharmacol Biol. Psychiatry. 2016. Vol. 4. N. 64. P. 293–310. DOI: 10.1016/j.pnpbp.2015.04.004.
  5. Pryce C.R., Azzinnari D., Spinelli S. et al. Helplessness: A systematic translational review of theory and evidence for its relevance to understanding and treating depression // Pharmacology & Therapeutics. 2011. Vol. 132. N. 3. P. 242–267. DOI: 10.1016/j.pharmthera.2011.06.006.
  6. Shirayama Y., Hashimoto K. Lack of Antidepressant Effects of (2R,6R) — Hydroxynorketamine in a Rat Learned Helplessness Model: Comparison with (R) — Ketamine // International Journal of Neuropsychopharmacology. 2018. Vol. 21. N. 1. P. 84–88. DOI: 10.1093/ijnp/pyx108.
  7. Котельникова С. О., Садовский М. С., Крайнева В. А. и др. Оценка предрасположенности беспородных белых крыс к формированию депрессивно-подобного состояния выученной беспомощности // Бюллетень экспериментальной биологии и медицины. 2020. Т. 170. № 8. С. 183–187 [Kotelnikova S. O., Sadovsky M. S., Krayneva V. A. et al. Assessment of the susceptibility of outbred white rats to the formation of a depression-like state of learned helplessness // Biull. Eksp. Biol. Med. 2020. Vol. 170. N. 2. P. 215–218] DOI: 10.1007/s10517‑020‑05036‑9 (in Russ).
  8. Wieland S., Boren J. L., Consroe P. F., Martin A. Stock differences in the susceptibility of rats to learned helplessness training // Life Sciences. 1986. Vol. 39. P. 937–944. DOI: 10.1016/0024-3205(86)90376-0.
  9. Padilla E., Barrett D., Shumake J., Gonzalez-Lima F. Strain, sex, and open-field behavior: factors underlying the genetic susceptibility to helplessness // Behav. Brain Res. 2009. Vol. 201. N. 2. P. 257–264. DOI: 10.1016/j.bbr.2009.02.019.
  10. Вальдман Е.А., Крайнева В.А., Котельникова С.О., Садовский М.С. Модель «выученной беспомощности» у крыс: возможности и ограничения при оценке депрессивно-подобного состояния и эффектов антидепрессантов // Биомедицина. 2021. Т. 17. № 2. С. 22–34. DOI: 10.33647/2074‑5982‑17‑2‑22‑34 [Valdman E.A., Kraineva V.A., Kotelnikova S.O., Sadovsky M.S. The «Learned helplessness» model in rats: possibilities and limitations in assessing a depressive-like state and effects of antidepressants // Journal Biomed. 2021. Vol. 17. N. 2. Р. 22–34] (in Russ).
  11. Rex A., Sondern U., Voigt J.P. et al. Strain Differences in Fear-Motivated Behavior of Rats // Biochemistry and Behavior. 1996. Vol. 54. N. 1. P. 107–111. DOI: 10.1016/0091-3057(95)02128-0.
  12. Середенин С.Б., Бадыштов Б.А., Незнамов Г.Г. и др. Прогноз индивидуальных реакций на эмоциональный стресс и бензодиазепиновые транквилизаторы // Экспериментальная и клиническая фармакология. 2001. Т. 64, № 1. С. 3–12. [Seredenin S.B., Badyshtov B.A. Neznamov G.G. et al. Predicting individual reactions to emotional stress and benzodiazepine tranquilizers // Experimental and clinical pharmacology. 2001. Vol. 64. N. 1. Р. 3–12] (in Russ.).
  13. Henn F.A., Vollmayr B. Stress models of depression: Forming genetically vulnerable strains // Neuroscience and Biobehavioral Reviews. 2005. Vol. 29. P. 799–804. DOI: 10.1016/j.neubiorev.2005.03.019.
  14. Borsini F., Cesana R. Mechanism of action of flibanserin in the learned helplessness paradigm in rats // European Journal of Pharmacology. 2001. Vol. 433. N. 1. Р. 81–89. DOI: 10.1016/s0014–2999(01)01495–9.
  15. Santos C.V., Gehm T., Hunziker M.H. Learned helplessness in the rat: Effect of response topography in a within-subject design // Behavioural Processes. 2011. Vol. 86. N. 2. P. 178–183. DOI: 10.1016/j.beproc.2010.11.005.
  16. Garg R., Heinzle E., Noor F. Hepatocytes of Wistar and Sprague Dawley rats differ significantly in their central metabolism // Cell Biochem. 2018. Vol. 119. N. 1. P. 909–917. DOI: 10.1002/jcb.26255.
  17. Zmarowski A., Beekhuijzen M., Lensen J., Emmen H. Differential performance of Wistar Han and Sprague Dawley rats in behavioral tests: Differences in baseline behavior and reactivity to positive control agents // Reproductive Toxicology. 2012. Vol. 34. N. 2. P. 192–203. DOI: 10.1016/j.reprotox.2012.05.091.
  18. Рыбникова Е.А., Ветровой О.В., Занько М.Ю. Сравнительная характеристика крыс линий Wistar, Wistar-Kyotо, Sprague Dawley, Long Evans, НП, SHR, BD–IX по поведению, по гормональному и антиоксидантному статусу // Журнал эволюционной биохимии и физиологии. 2018. Т. 54. № 5. С. 331–338. DOI: 10.7868/S0044452918050058 [Rybnikova E.A., Vetrovoia O.V., Zenkoa M.Yu. Comparative characterization of rat strains (Wistar, Wistar — Kyoto, Sprague Dawley, Long Evans, LT, SHR, BD–IX) by their behavior, hormonal level and antioxidant status // Journal of Evolutionary Biochemistry and Physiology. 2018. Vol. 54. N. 5. Р. 374–382. DOI: 10.1134/S0022093018050058] (in Russ.).
  19. Yoon Y.W., Lee D.H., Lee B.H. et al. Different strains and substrains of rats show different levels of neuropathic pain behaviors // Exp. Brain Res. 1999. Vol. 129. Р. 167–171. DOI: 10.1007/s002210050886.
  20. Mällo T., Alttoa A., Kõiv K. et al. Rats with persistently low or high exploratory activity: behaviour in tests of anxiety and depression, and extracellular levels of dopamine // Behav. Brain Res. 2007. Vol. 177. N. 2. P. 269–281. DOI: 10.1016/j.bbr.2006.11.022.
  21. Padilla E., Shumake J., Barrett D.W. et al. Novelty-evoked activity in open field predicts susceptibility to helpless behavior // Physiology & Behavior. 2010. Vol. 101. P. 746–754. DOI: 10.1016/j.physbeh.2010.08.017.
  22. Feyissa D.D., Aher Y.D., Engidawork E. et al. Individual Differences in Male Rats in a Behavioral Test Battery: A Multivariate Statistical Approach // Front. Behav. Neurosci. 2017. Vol. 11. P. 26. DOI: 10.3389/fnbeh.2017.00026.
  23. Sequeira-Cordero A., Mora-Gallegos A., Cuenca-Berger P., Fornaguera-Trías J. Individual differences in the forced swimming test and the effect of environmental enrichment: searching for an interaction // Neuroscience. 2014. Vol. 265. P. 95–107. DOI: 10.1016/j.neuroscience.2014.01.
  24. Ho Y.C., Wang S. Аdult neurogenesis is reduced in the dorsal hippocampus of rats displaying learned helplessness behavior // Neuroscience. 2010. Vol. 171. P. 153–161. DOI: 10.1016/j.neuroscience.2010.08.062.
  25. Zhang K., Fujita Y., Chang L. et al. Abnormal composition of gut microbiota is associated with resilience versus susceptibility to inescapable electric stress // Translational Psychiatry. 2019. Vol. 9. P. 231–240. DOI: 10.1038/s41398‑019‑0571‑x.

Received: 2022-03-17
Reviewed: 2022-05-30
Accepted for publication: 2022-06-07

You may be interested