Animal models of fungal infections

DOI: 10.29296/2618723X-2021-03-05

K.Е. Borovkova, head of microbiological laboratory, ORCID: 0000-0003-1571-6549;
M.N. Makarova, Dr. Med. Sci., Director, ORCID: 0000-0003-3176-6386;
L.R. Nikiforova, microbiologist, ORCID: 0000-0001-8710-2023;
J.V. Salmova, microbiologist, ORCID: 0000-0001-9891-8634

Institute of Pre-Clinical Research Ltd.
188663, Russia, Leningrad Region, Kuzmolovsky, Zavodskaya St.3, Build. 245
Е-mail: [email protected]


Keywords: fungal infections mycoses dermatophytosis candidiasis aspergillosis

For citation:

Borovkova К.E., Makarova M.N., Nikiforova L.R., Salmova J.V. Animal models of fungal infections. Laboratory Animals for Science. 2021; 3. https://doi.org/10.29296/2618723X-2021-03-05

Abstract

Every year, the number of infections caused by microscopic fungi is growing due to an increasing resistance to various antifungal drugs and increasing number of people with weakened immune systems.Animal studies enable us to explore the pathogenesis, immunological reactions of the body to fungal infection, testing of new antifungal compounds, and much more. The most of fungal infection models is associated with Dermatophytes, Candida аnd Aspregillus, since they are the causative agents of most human fungal infections. Various types of animals from small rodents to cattle are used in experimental models. The most preferred animals used in vivo studies are mice. These animals have a number of advantages, such as a wide variety of strains, cheap price, low maintenance and convenience when carrying out manipulations. However, this type of animal is not suitable for all studies. For example, guinea pigs are frequently used for testing antifungal compounds against dermatophytes, due to structural similarities between their skin and human skin. While choosing the animal species, it is necessary to keep in mind the fact that most animals are resistant to pathogens of human infections. In order to cause a stable infection, the immunity of experimental  animal should be suppressed. It is also necessary to take into account methods of infection and concentration of a causative agent in addition to choosing an animal and a pathogen. To form the development of the infectioning process, it is necessary to use the method of infection similar to the natural path of infection. In addition to studies of fungal infections on laboratory animals, alternative models are used on invertebrates. These models cannot completely replace studies on mammals, but they can be used for additional studies to expand our knowledge about fungal pathogenesis, to explore the virulence of fungi and to discover the new antifungal compounds. Thus, it is necessary to consider many factors for creating an infectious process with clinical  features similar to a human being, while planning a study of fungal infections in vivo.

Full text avaliable in Russain only 

Authors contribution

K.E. Borovkova – literary data collection, data collection and analysis, swriting and editing of the text

M.N. Makarova – study concept and design, editing of the text, supervised the project, approved the final version of the manuscript

L.R. Nikiforova – scientific advice

J.V. Salmova – scientific advice

Conflict of interest

The authors declare no conflict of interest.

References

  1. Климко Н.Н. Микозы - скрытая угроза // Медицина экстремальных ситуаций. – 2018. – №3. – С. 289-292. [Klimko N.N. Mikozy - skrytaya ugroza // Meditsina ekstremal'nykh situatsii. – 2018. – №3. – P. 289-292 (In Russ).].
  2. Kainz K., Bauer M.A., Madeo F., Carmona-Gutierrez D. Fungal infections in humans: the silent crisis // Microb Cell. – 2020. – Vol. 7(6). – P. 143-145. doi:10.15698/mic2020.06.718.
  3. Рамазанова Б.А., Батырбаева Д.Ж., Бекназарова А.Н. Различные виды грибковых инфекции у онкологических больных (обзор литературы) // Вестник КазНМУ. – 2015. – №3. – С.47-54. [Ramazanova B.A., Batyrbaeva D.Zh., Beknazarova A.N. Razlichnye vidy gribkovyh infekcii u onkologicheskih bol'nyh (obzor literatury) // Vestnik KazNMU. – 2015. – №3. – Р. 47-54 (In Russ).].
  4. Köhler J.R., Casadevall A., Perfect J. The spectrum of fungi that infects humans // Cold Spring Harb Perspect Med. – 2014. – Vol. 5(1). – P. 1-22. doi:10.1101/cshperspect.a019273.
  5. Janbon G., Quintin J., Lanternier F., d'Enfert C. Studying fungal pathogens of humans and fungal infections: fungal diversity and diversity of approaches // Microbes Infect. – 2019. – Vol. 21(5-6). – P. 237-245. doi: 10.1016/j.micinf.2019.06.011.
  6. McGinnis M.R., Tyring S.K. Introduction to Mycology. In: Baron S., ed. Medical Microbiology. 4th ed. Galveston (TX): University of Texas Medical Branch at Galveston. 1996.
  7. Fungal infections. [Электронный ресурс] URL: http://www.life-worldwide.org/fungal-diseases.
  8. Смирнова О., Литвак Н. Микозы кожи: «Перспективная» инфекция // Ремедиум. – 2015. – №6. – С.43-46. [Smirnova O., Litvak N. Mikozy kozhi: «Perspektivnaja» infekcija // Remedium. – 2015. – №6. – P.43-46 (In Russ).].
  9. Arenas R., Moreno-Coutiño G., Welsh O. Classification of subcutaneous and systemic mycoses // Clin Dermatol. – 2012. – Vol. 30(4). – P. 369-371. doi: 10.1016/j.clindermatol.2011.09.006.
  10. Воробьева А.А. и др. Атлас по медицинской микробиологии, вирусологии и иммунологии // под ред. А.А. Воробьева, А.С. Быкова. М.: Медицинское информационное агентство. 2003. 232 с. [Vorob'eva A.A. i dr. Atlas po medicinskoj mikrobiologii, virusologii i immunologii // pod red. A. A. Vorob'eva, A.S. Bykova. M.: Medicinskoe informacionnoe agentstvo. 2003. Р. 232 (In Russ).].
  11. Prasad N., Gupta A. Fungal Peritonitis in Peritoneal Dialysis Patients // Peritoneal Dialysis International. – 2005. – Vol. 25(3). – P. 207-222. doi:10.1177/089686080502500302.
  12. Москвитина Е.Н. и др. Атлас возбудителей грибковых инфекций // Е. Н. Москвитина [и др.]. М.: ГЭОТАР-Медиа. 2017. 208 с. [Moskvitina E.N. i dr. Atlas vozbuditelej gribkovyh infekcij // E. N. Moskvitina [i dr.]. M.: GJeOTAR-Media. 2017. Р. 208 (In Russ).].
  13. Shimamura T., Kubota N., Shibuya K. Animal model of dermatophytosis // J Biomed Biotechnol. – 2012. – Vol. 1. doi: 10.1155/2012/125384.
  14. Baltazar L.M., Santos D.A. Perspective on animal models of dermatophytosis caused by Trichophyton rubrum. // Virulence. – 2015. – Vol. 6(4). – P. 372-375. doi:10.1080/21505594.2015.1027480.
  15. Rashid A. Arthroconidia as vectors of dermatophytosis // Cutis. – 2001. –Vol. 67(5) – P. 23.
  16. Faway E., Lambert de R. C., Poumay Y. In vitro models of dermatophyte infection to investigate epidermal barrier alterations // Exp Dermatol. – 2018. – Vol. 27(8). – P. 915-922. doi: 10.1111/exd.13726.
  17. Hay R.J., Calderon R.A., Collins M.J. Experimental dermatophytosis: the clinical and histopathologic features of a mouse model using Trichophyton quinckeanum (mouse favus) // J Invest Dermatol. – 1983. – Vol. 81(3). – P. 270-274. doi: 10.1111/1523-1747.ep12518292.
  18. Sen S., Borah S.N., Kandimalla R., Bora A., Deka S. Efficacy of a rhamnolipid biosurfactant to inhibit Trichophyton rubrum in vitro and in a mice model of dermatophytosis // Exp Dermatol. – 2019. – Vol. 28(5). – P. 601-608. doi: 10.1111/exd.13921.
  19. Venturini J., Alvares A.M., Camargo M.R., Marchetti C.M., Fraga-Silva T.F., Luchini A.C., Arruda M.S. Dermatophyte–host relationship of a murine model of experimental invasive dermatophytosis // Microbes and Infection. – 2012. – Vol. 14(13). – P. 1144–1151. doi:10.1016/j.micinf.2012.07.014.
  20. Weber J., Balish E. Antifungal therapy of dermatophytosis in guinea pigs and congenitally athymic rats // Mycopathologia. – 2004. – Vol. 90. – P. 47-54.
  21. Kumar N., Shishu. D-optimal experimental approach for designing topical microemulsion of itraconazole: Characterization and evaluation of antifungal efficacy against a standardized Tinea pedis infection model in Wistar rats // Eur J Pharm Sci. – 2015. – Vol. 67. – P. 97-112. doi: 10.1016/j.ejps.2014.10.014.
  22. Saunte D.M., Simmel F., Frimodt-Moller N., Stolle L.B., Svejgaard E.L., Haedersdal M., Kloft C., Arendrup M.C. In vivo efficacy and pharmacokinetics of voriconazole in an animal model of dermatophytosis // Antimicrob Agents Chemother. – 2007. – Vol. 51(9). – P. 3317-3321. doi: 10.1128/AAC.01185-06.
  23. Baldo A., Mathy A., Tabart J., Camponova P., Vermout S., Massart L., Marеchal F., Galleni M., Mignon B. Secreted subtilisin Sub3 from Microsporum canis is required for adherence to but not for invasion of the epidermis // Br J Dermatol. – 2010. – Vol. 162(5). – P. 990-997. doi: 10.1111/j.1365-2133.2009.09608.x.
  24. Song X., Wei Y.X., Lai K.M., He Z.D., Zhang H.J. In vivo antifungal activity of dipyrithione against Trichophyton rubrum on guinea pig dermatophytosis models // Biomed Pharmacother. – 2018. – Vol. 108. – P. 558-564. doi: 10.1016/j.biopha.2018.09.045.
  25. Ghannoum M.A., Long L., Pfister W.R. Determination of the efficacy of terbinafine hydrochloride nail solution in the topical treatment of dermatophytosis in a guinea pig model // Mycoses. – 2009. – Vol. 52(1). – P. 35-43. doi: 10.1111/j.1439-0507.2008.01540.x.
  26. Van Cutsem J., Janssen P.A. Experimental systemic dermatophytosis // J Invest Dermatol. – 1984. – Vol. 83(1). – P. 26-31. doi: 10.1111/1523-1747.ep12261652.
  27. Arruda M.S., Gilioli S., Vilani-Moreno F.R. Experimental dermatophytosis in hamsters inoculated with Trichophyton mentagrophytes in the cheek pouch // Rev Inst Med Trop Sao Paulo. – 2001. – Vol. 43(1). – P.29-32. doi: 10.1590/s0036-46652001000100006.
  28. Oborilova E., Rybnikar A. Experimental dermatophytosis in calves caused by Trichophyton verrucosum culture // Mycoses. – 2005. – Vol. 48(3). – P. 187-91. doi: 10.1111/j.1439-0507.2005.01123.x.
  29. DeBoer D.J., Moriello K.A. Inability of two topical treatments to influence the course of experimentally induced dermatophytosis in cats // J Am Vet Med Assoc. – 1995. – Vol. 207(1) – P. 52-57.
  30. Cambier L., Heinen M.P., Mignon B. Relevant Animal Models in Dermatophyte Research // Mycopathologia. – 2017. – Vol. 182(1-2). – P. 229-240. doi: 10.1007/s11046-016-0079-3.
  31. Hanel H., Braun B., Löschhorn K. Experimental dermatophytosis in nude guinea pigs compared with infections in Pirbright White animals // Mycoses. – 1990. – Vol. 33(4). – P. 179-189. doi: 10.1111/myc.1990.33.4.179.
  32. Muzyka B.C., Epifanio R.N. Update on oral fungal infections // Dent Clin North Am. – 2013. – Vol. 57(4). – P. 561-581. doi: 10.1016/j.cden.2013.07.002.
  33. Tuite N.L., Lacey K. Overview of invasive fungal infections // Methods Mol Biol. – 2013. – Vol. 968. – P. 1-23. doi: 10.1007/978-1-62703-257-5_1.
  34. Semis R., Mendlovic S., Polacheck I., Segal E. Activity of an Intralipid formulation of nystatin in murine systemic candidiasis // Int J Antimicrob Agents. – 2011. – Vol. 38(4). – P. 336-340. doi: 10.1016/j.ijantimicag.2011.04.018.
  35. Frenkel M., Mandelblat M., Alastruey-Izquierdo A., Mendlovic S., Semis R., Segal E. Pathogenicity of Candida albicans isolates from bloodstream and mucosal candidiasis assessed in mice and Galleria mellonella // J Mycol Med. – 2016. – Vol. 26(1). – P. 1-8. doi: 10.1016/j.mycmed.2015.12.006.
  36. Sandovsky-Losica H., Barr-Nea L., Segal E. Fatal systemic candidiasis of gastrointestinal origin: an experimental model in mice compromised by anti-cancer treatment // J Med Vet Mycol. – 1992. – Vol. 30(3). – P. 219-231. doi: 10.1080/02681219280000281.
  37. Segal E., Gottfried L., Lehrer N. Candidal vaginitis in hormone-treated mice: prevention by a chitin extract // Mycopathologia. – 1988. – Vol. 102(3). – P. 157-163. doi: 10.1007/BF00437398.
  38. Clemons K.V., Gonzalez G.M., Singh G., et al. Development of an orogastrointestinal mucosal model of candidiasis with dissemination to visceral organs // Antimicrob Agents Chemother. – 2006. – Vol. 50(8). – P. 2650-2657. doi: 10.1128/AAC.00530-06.
  39. Conti H.R., Huppler A.R., Whibley N., Gaffen S.L. Animal models for candidiasis // Curr Protoc Immunol. – 2014. – Vol. 105. doi: 10.1002/0471142735.im1906s105.
  40. Algin C., Sahin A., Kiraz N., Sahintürk V., Ihtiyar E. Effectiveness of bombesin and Saccharomyces boulardii against the translocation of Candida albicans in the digestive tract in immunosuppressed rats // Surg Today. – 2005. – Vol. 35(10). – P. 869-873. doi: 10.1007/s00595-005-3049-9.
  41. Cassone A., Boccanera M., Adriani D., Santoni G., De Bernardis F. Rats clearing a vaginal infection by Candida albicans acquire specific, antibody-mediated resistance to vaginal reinfection // Infect Immun. – 1995. – Vol. 63(7). – P. 2619-2624. doi:10.1128/iai.63.7.2619-2624.1995.
  42. Fisker A.V., Schiott C.R., Philipsen H.P. Long-term oral candidosis in rats // Acta Pathol Microbiol Immunol Scand B. – 1982. – Vol. 90(3). – P. 221-227. doi: 10.1111/j.1699-0463.1982.tb00109.x.
  43. Junqueira J.C., Martins J.S., Faria R.L., Colombo C.E., Jorge A.O. Photodynamic therapy for the treatment of buccal candidiasis in rats // Lasers Med Sci. – 2009. – Vol. 24(6). – P. 877-884. doi: 10.1007/s10103-009-0673-4.
  44. Maebashi K., Itoyama T., Uchida K., Suegara N., Yamaguchi H. A novel model of cutaneous candidiasis produced in prednisolone-treated guinea-pigs // J Med Vet Mycol. – 1994. – Vol. 32(5). – P. 349-359. doi: 10.1080/02681219480000471.
  45. Odds F.C., Van Nuffel L., Gow N.A.R. Survival in experimental Candida albicans infections depends on inoculum growth conditions as well as animal host // Microbiology (Reading). – 2000. – Vol. 146(8). – P. 1881-1889. doi: 10.1099/00221287-146-8-1881.
  46. Lu G., Wang C., Wu C., Yan L., Tang J. Identification of early biomarkers in a rabbit model of primary Candida pneumonia // BMC Infect Dis. – 2019. – Vol. 19(1). – P. 698. doi: 10.1186/s12879-019-4320-9.
  47. Schinabeck M.K., Long L.A., Hossain M.A., Chandra J., Mukherjee P.K., Mohamed S., Ghannoum M.A. Rabbit model of Candida albicans biofilm infection: liposomal amphotericin B antifungal lock therapy // Antimicrob Agents Chemother. – 2004. – Vol. 48(5). – P. 1727-1732. doi: 10.1128/AAC.48.5.1727-1732.2004.
  48. Segal E., Frenkel M. Experimental in Vivo Models of Candidiasis // J Fungi (Basel). – 2018. – Vol. 4(1). – P. 21. doi:10.3390/jof4010021.
  49. Hirayama T., Miyazaki T., Ito Y. et al. Virulence assessment of six major pathogenic Candida species in the mouse model of invasive candidiasis caused by fungal translocation // Sci Rep. – 2020. – Vol. 10(1). – P. 3814. doi:10.1038/s41598-020-60792-y.
  50. Hohl T.M. Overview of vertebrate animal models of fungal infection // J Immunol Methods. – 2014. – Vol. 410. – P. 100-112. doi: 10.1016/j.jim.2014.03.022.
  51. MacCallum D.M., Odds F.C. Influence of grapefruit juice on itraconazole plasma levels in mice and guinea pigs // J Antimicrob Chemother. – 2002. – Vol. 50(2). – P. 219-224. doi: 10.1093/jac/dkf103.
  52. Desoubeaux G., Cray C. Animal Models of Aspergillosis // Comp Med. –2018. – Vol. 68(2). – P. 109-123.
  53. Васильева Н.В., Босак И.А., Богомолова Т.С. и др. Разработка экспериментальной модели инвазивного аспергиллёза лёгких с использованием клинических изолятов Aspergillus fumigatus // Проблемы медицинской микологии. – 2016. – №4. – С 32-35. [Vasil'eva N.V., Bosak I.A., Bogomolova T.S. i dr. Razrabotka jeksperimental'noj modeli invazivnogo aspergilljoza ljogkih s ispol'zovaniem klinicheskih izoljatov Aspergillus fumigatus // Problemy medicinskoj mikologii. – 2016. – №4. – P. 32-35 (In Russ).].
  54. Shields B.E., Rosenbach M., Brown-Joel Z., Berger A.P., Ford B.A., Wanat K.A. Angioinvasive fungal infections impacting the skin: Background, epidemiology, and clinical presentation // J Am Acad Dermatol. – 2019. – Vol. 80(4). – P. 869-880. doi: 10.1016/j.jaad.2018.04.059.
  55. Paulussen C., Boulet G.A., Cos P., Delputte P., Maes L.J. Animal models of invasive aspergillosis for drug discovery // Drug Discov Today. – 2014. – Vol. 19(9). – P. 1380-1386. doi: 10.1016/j.drudis.2014.06.006.
  56. Ghori H.M., Edgar S.A. Comparative susceptibility of chickens, turkeys and Coturnix quail to aspergillosis // Poult Sci. – 1973. – Vol. 52(6). – P. 2311-2315. doi: 10.3382/ps.0522311.
  57. Melloul E., Thierry S., Durand B., Cordonnier N., Desoubeaux G., Chandenier J., Bostvironnois C., Botterel F., Chermette R., Guillot J., Arne P. Assessment of Aspergillus fumigatus burden in lungs of intratracheally-challenged turkeys (Meleagris gallopavo) by quantitative PCR, galactomannan enzyme immunoassay, and quantitative culture // Comp Immunol Microbiol Infect Dis. – 2014. – Vol. 37(5-6). – P. 271-279. doi: 10.1016/j.cimid.2014.07.005.
  58. Suleiman M.M., Duncan N., Eloff J.N. et al. A controlled study to determine the efficacy of Loxostylis alata (Anacardiaceae) in the treatment of aspergillus in a chicken (Gallus domesticus) model in comparison to ketoconazole // BMC Vet Res. – 2012. – Vol. 8. – P. 10. doi: 10.1186/1746-6148-8-210.
  59. Clemons K.V., Stevens D.A. The contribution of animal models of aspergillosis to understanding pathogenesis, therapy and virulence // Med Mycol. – 2005. – Vol. 43(l). – P. 101-110. doi: 10.1080/13693780500051919.
  60. Giudice P.L., Campo S., Verdoliva A., et al. Efficacy of PTX3 in a rat model of invasive aspergillosis // Antimicrob Agents Chemother. – 2010. – Vol. 54(10). – P. 4513-4515. doi:10.1128/AAC.00674-10.
  61. Zhang F., An Y., Li Z., Zhao C. A novel model of invasive fungal rhinosinusitis in rats // Am J Rhinol Allergy. – 2013. – Vol. 27(5). – P. 361-366. doi: 10.2500/ajra.2013.27.3953.
  62. Ahmad S., Al-Shaikh A.A., Khan Z. Development of a novel inhalational model of invasive pulmonary aspergillosis in rats and comparative evaluation of three biomarkers for its diagnosis // PLoS One. – 2014. – Vol. 9(6). doi: 10.1371/journal.pone.0100524.
  63. Becker M.J., De Marie S., Fens M.H., Haitsma J.J., Verbrugh H.A., Lachmann B., Bakker-Woudenberg I.A. Pathophysiology of unilateral pulmonary aspergillosis in an experimental rat model // Med Mycol. – 2006. – Vol. 44(2). – P. 133-139. doi: 10.1080/13693780500271749.
  64. Adamson T.W., Diaz-Arevalo D., Gonzalez T.M., Liu X., Kalkum M. Hypothermic endpoint for an intranasal invasive pulmonary aspergillosis mouse model // Comp Med. – 2013. – Vol. 63(6). – P. 477-81.
  65. Ben-Ami R., Lewis R.E., Leventakos K., Latge J.P., Kontoyiannis D.P. Cutaneous model of invasive aspergillosis //Antimicrob Agents Chemother. –2010. – Vol. 54(5). – P.1848-1854. doi:10.1128/AAC.01504-09.
  66. Chiang L.Y., Ejzykowicz D.E., Tian Z.Q., Katz L., Filler S.G. Efficacy of ambruticin analogs in a murine model of invasive pulmonary aspergillosis // Antimicrob Agents Chemother. – 2006. – Vol. 50(10). – P. 3464-3466. doi:10.1128/AAC.00558-06.
  67. Chiller T.M., Luque J.C., Sobel R.A., Farrokhshad K., Clemons K.V., Stevens D.A. Development of a murine model of cerebral aspergillosis // J Infect Dis. – 2002. – Vol. 186(4). – P. 574-7. doi: 10.1086/341567.
  68. Kirkpatrick W.R., McAtee R.K., Fothergill A.W., Rinaldi M.G., Patterson T.F. Efficacy of voriconazole in a guinea pig model of disseminated invasive aspergillosis // Antimicrob Agents Chemother. – 2000. – Vol. 44(10). – P. 2865-2868. doi: 10.1128/AAC.44.10.2865-2868.2000.
  69. Lengerova M., Kocmanova I., Racil Z., et al. Detection and measurement of fungal burden in a guinea pig model of invasive pulmonary aspergillosis by novel quantitative nested real-time PCR compared with galactomannan and (1,3)-β-D-glucan detection // J Clin Microbiol. – 2012. – Vol. 50(3). – P. 602-608. doi:10.1128/JCM.05356-11.
  70. Chandrasekar P.H., Cutright J.L., Manavathu E.K. Efficacy of voriconazole plus amphotericin B or micafungin in a guinea-pig model of invasive pulmonary aspergillosis // Clin Microbiol Infect. – 2004. – Vol. 10(10). – P. 925-928. doi: 10.1111/j.1469-0691.2004.00958.x.
  71. Kirkpatrick W.R., McAtee R.K., Fothergill A.W., Loebenberg D., Rinaldi M.G., Patterson T.F. Efficacy of SCH56592 in a rabbit model of invasive aspergillosis // Antimicrob Agents Chemother. – 2000. – Vol. 44(3). – P. 780-782. doi: 10.1128/AAC.44.3.780-782.2000.
  72. Petraitis V., Petraitiene R., Hope W.W., et al. Combination therapy in treatment of experimental pulmonary aspergillosis: in vitro and in vivo correlations of the concentration- and dose- dependent interactions between anidulafungin and voriconazole by Bliss independence drug interaction analysis // Antimicrob Agents Chemother. – 2009. – Vol. 53(6). – P. 2382-2391. doi:10.1128/AAC.00329-09.
  73. Игнатьева С. М., Спиридонова В.А., Богомолова Т. С. и др. Особенности определения галактоманнана в сыворотке крови и бронхоальвеолярном лаваже онкогематологических больных с инвазивным аспергиллезом. Собственные данные и обзор литературы // Проблемы медицинской микологии. – 2013. – Т. 15. – № 4. – С. 45-52. [Ignat'eva S. M., Spiridonova V.A., Bogomolova T.S. i dr. Osobennosti opredelenija galaktomannana v syvorotke krovi i bronhoal'veoljarnom lavazhe onkogematologicheskih bol'nyh s invazivnym aspergillezom. Sobstvennye dannye i obzor literatury // Problemy medicinskoj mikologii. – 2013. – T. 15. – № 4. – P. 45-52. (In Russ).].
  74. Madende M., Albertyn J., Sebolai O., Pohl C.H. Caenorhabditis elegans as a model animal for investigating fungal pathogenesis // Med Microbiol Immunol. – 2020. – Vol. 209(1). – P. 1-13. doi: 10.1007/s00430-019-00635-4.
  75. Koller B., Schramm C., Siebert S., et al. Dictyostelium discoideum as a Novel Host System to Study the Interaction between Phagocytes and Yeasts // Front Microbiol. – 2016. – Vol. 7. – P. 1665. doi: 10.3389/fmicb.2016.01665.
  76. Mylonakis E., Casadevall A., Ausubel F.M. Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi // PLoS Pathog. – 2007. – Vol. 3(7). – P. 101. doi: 10.1371/journal.ppat.0030101.
  77. Meng X., Zhu F., Chen K. Silkworm: A Promising Model Organism in Life Science // J Insect Sci. – 2017. – Vol. 17(5). – P. 97. doi: 10.1093/jisesa/iex064.
  78. Matsumoto Y., Sekimizu K. Silkworm as an experimental animal for research on fungal infections // Microbiol Immunol. – 2019. – Vol. 63(2). – P. 41-50. doi: 10.1111/1348-0421.12668.

You may be interested