Watering of laboratory animals. Technical features, sanitary and hygiene wellbeing

Original article

УДК 57.081+591.5+614.9+613.3
DOI: 10.29296/2618723X-2022-02-08

E.D. Bondareva*, Head of the Biosafety Group, https://orcid.org/0000-0002-7170-9717
M.A. Akimova, chief livestock specialist, https://orcid.org/0000-0001-8643-3613
E.V. Vesnina, livestock specialist, https://orcid.org/0000-0003-4876-1397

Research-and-manufacturing company «HOME OF PHARMACY»,
188663, Russia, Leningrad oblast, Vsevolozhskiy district, Kuzmolovskiy t.s., Zavodskaya st. 3–245, room 4.34

* e-mail: [email protected]


Keywords: laboratory animals watering vivarium biomedical research

Acknowledgements

The study was performed without external funding.


For citation:

Bondareva E.D. , Akimova M.A., Vesnina E.V. Watering of laboratory animals. Technical features, sanitary and hygiene wellbeing. Laboratory Animals for Science. 2022; 2. https://doi.org/10.29296/2618723X-2022-02-08

Abstract

The article presents the experience of using various watering systems for laboratory animals. The methods of watering are considered taking into account the species-specific and social characteristics of animals.

Granular feeds may not always meet all the requirements for essential trace elements. If any component is found to be missing, the feed must be changed or you should consider adding the missing component to the drinking water.

Adding water-soluble ingredients to drinking water will help keep animals healthy, such as vitamin C, which guinea pigs need. However, vitamin C is rapidly destroyed by light, heat, and moisture. Therefore, laboratory guinea pigs will require dark glass drinkers, or a correct dose calculation, taking into account the rate of destruction of vitamin C.

Equipment used for watering animals must be safe for their health. Most animal drinkers are made of the cheapest material — plastic, in particular polycarbonate. For the production of polycarbonate, bisphenol A (BPA) is widely used, which can be released from dishes into the food and water that is stored  in it.

In our experience, glass is the most acceptable material for use in animal drinkers. Glass drinkers are easy to clean and disinfect, having a smooth surface, biological, chemical and other contaminations do not linger on the surfaces of the drinkers. Due to transparency, the contamination of drinking bowls and water is easily monitored visually.

Of great importance are the methods of disinfection of all elements of the drinking system and the materials from which it is made. Any change in the composition and quality of drinking water may affect the health of laboratory animals and the results of experiments.

However, it is worth remembering that drinkers made of glass are heavier than drinkers made of plastic, which must be taken into account when developing standards for lifting and moving weights for personnel. Employees who work with glass drinkers must observe safety precautions when working with glass.

Conflict of interest

The authors declare no conflict of interest.

Authors contribution

E.D. Bondareva — concept, supervised the project, worked out the technical details for the suggested experiment, analysis of literature, writing of the text.
M.A. Akimova — data analysis, editing of the text.
E.V. Vesnina — literary data collection, data analysis, supervised the findings of this work.

References

  1. Edstrom E. K., Curran R. Quality assurance of animal watering systems //Lab. animal. 2003. N. 32 (5). P. 32–35. https://doi.org/10.1038/laban0503-32.
  2. Руководство по использованию лабораторных животных для научных и учебных целей в СПбГМУ им. акад. И.П. Павлова / под ред. И.В. Белозерцевой. СПбГМУ им. акад. И.П. Павлова, 2003. 57 с. [Rukovodstvo po ispol’zovaniyu laboratornykh zhivotnykh dlya nauchnykh i uchebnykh tselei v SPbGMU im. akad. IP Pavlova / pod red. I. V. Belozertsevoi. SPbGMU im. akad. IP Pavlova, 2003. 57 p. (In Russ.)].
  3. Ross B. Code of practice for the housing and care of laboratory mice, rats, guinea pigs and rabbits //Victorian Government department of primary industries. Australia. 2004. P. 70.
  4. Tveden-Nyborg P., Vogt L., G. Schjoldager J. et al. Maternal vitamin C deficiency during pregnancy persistently impairs hippocampal neurogenesis in offspring of guinea pigs //PLoS One. 2012. N. 7 (10). P. e48488. https://doi.org/10.1371/journal.pone.0048488.
  5. Drouin G., Godin J. R., Pagé B. The genetics of vitamin C loss in vertebrates //Current genomics. 2011. N. 12 (5). P. 371–378. https://doi.org/10.2174/138920211796429736.
  6. Hooper M. H., Carr A., Marik P. E. The adrenal-vitamin C axis: from fish to guinea pigs and primates //Critical Care. 2019. N. 23 (1). P. 1–2. https://doi.org/10.1186/s13054‑019‑2332‑x.
  7. Frikke-Schmidt H., Tveden-Nyborg P., Lykkesfeldt J. L-dehydroascorbic acid can substitute l-ascorbic acid as dietary vitamin C source in guinea pigs //Redox biology. 2016. N. 7. P. 8–13. https://doi.org/10.1016/j.redox.2015.11.003.
  8. Honeycutt J. A., Nguyen J., Kentner A., Brenhouse H. Effects of water bottle materials and filtration on Bisphenol A content in laboratory animal drinking water //Journal of the American Association for Laboratory Animal Science. 2017. N. 56 (3). P. 269–272.
  9. National Research Council et al. Committee for the Update of the Guide for the Care and Use of Laboratory Animals // Guide for the care and use of laboratory animals. 2011. N. 327 (3). P. 963–965.
  10. Richardson S. D. Disinfection by-products and other emerging contaminants in drinking water // TrAC Trends in Analytical Chemistry. 2003. N. 22 (10). P. 666–684. https://doi.org/10.1016/S0165-9936(03)01003-3.

Received: 2022-01-28
Reviewed: 2022-03-10
Accepted for publication: 2022-03-21

You may be interested