Experience Of Modeling Of Non-Alcohol Stemathegatitis With Use Of Methyonin-Holin Deficient Diet On The Mouse Of The C57BL/6 Line

DOI: 10.29296/2618723X-2018-02-06

M. Makarova(1), Deputy dir. of science, Ya. Gushchin(1), researcher, pathomorphologist, N. Faustova(1), PhD, senior researcher, A. Kalatanova(1), pharmacologist of group pharmacodynamics, A. Selezneva(2), PhD, Deputy Head of the Department for Research and Development, S. Glembotsky(2), Head of the department for research and development; 1-CJSC «Saint-Petersburg institute of pharmacy», 188663, Russia, Leningradskiy region, Vsevolozhskiy district, Kuzmolovskiy, st. Zavodskaya, 3. b. 245; 2-State Institute of Drugs and Good Practices, 109044, Moscow, Lavrov lane, 6 Е-mail: [email protected]


Keywords: non-alcoholic steatohepatitis oxidative stress methionine-choline deficiency diet pro-inflammatory cytokines

For citation:

Makarova M., Gushchin Ya., Faustova N., Kalatanova A., Selezneva A., Glembotsky S. Experience Of Modeling Of Non-Alcohol Stemathegatitis With Use Of Methyonin-Holin Deficient Diet On The Mouse Of The C57BL/6 Line. Laboratory Animals for Science. 2018; 2. https://doi.org/10.29296/2618723X-2018-02-06

Abstract

The research and development of new drugs for the treatment and prevention of non-alcoholic steatohepatitis (NASH) is one of the urgent problems of modern pharmacology. NASH represents a significant threat to health, so its development occurs gradually, without pronounced manifestations. The pathogenesis of NASH is considered today as the theory of «two strikes»: an increase in revenues in the liver, free fatty acids and the development of steatosis hepatocyte – «primary blow»; the reaction of oxidation of free fatty acids and the formation of products of lipid peroxidation and reactive oxygen species – oxidative stress – a «second stroke». To evaluate the effectiveness of drug candidates for the treatment and prevention of NASH, various methods are used to model this pathology in animals, each of which has its own pros and cons, as described in this article. Based on the analysis of the main existing modeling methods, the article presents the results of testing the use of a methionine-choline deficient diet in mice for the purpose of developing NASH. As a result of prolonged (28 days) application of this diet in C57bl / 6 mice, the values of key parameters characterizing the development of NASH in humans were noted. On the 29th day of the study on the background of modeling in animals, an increase of AST and concentration of inflammatory cytokines (IL6, TNF-α), oxidative stress (increasing the concentration of malondialdehyde in the liver and blood of experimental animals), fat and balloon degeneration of hepatocytes and also inflammatory liver infiltration, recorded by the results of histology. Аll marked pathological changes in experimental animals are manifestations of the main components of the pathogenesis of NASH and are observed in the clinic. This allows us to conclude that simulation NASH via inclusion in the diet of mice C57BL/6-methionine choline deficient diet is effective for the evaluation of new drugs for the treatment and prevention of NASH. Key issues in the methodology and modeling conditions of NASH are described in detail in this article.

References

  1. Bueverov A.O. Alkogol`nyy i nealkogol`nyy steatogepatit: obshhnost` i razlichiya. Diffuznye zabolevaniya pecheni: diagnostika i lechenie: Metodicheskoe posobie. Pod red. V.T. Ivashkina. M.: ID «M Vesti». 2004; 32–43.
  2. Shul`pekova Yu. O. Lekarstvennye porazheniya pecheni // Vrach. – 2010; 7: 13–8.
  3. Pavlov Ch., Bakulin I. G. Nealkogol`nyy steatogepatit: klinicheskie osobennosti i principy lecheniya // Vrach. – 2007; 10: 24–8.
  4. Podymova S.D. Zhirovoy gepatoz, nealkogol`nyy steatogepatit. Kliniko-morfologicheskie osobennosti. Prognoz. Lechenie. // RMZh. – 2005; 2: 61–5.
  5. Mylonas C., Kouretas D. Lipid peroxidation and tissue damage. In vivo (Athens, Greece). 1998; 13 (3): 295–309.
  6. Sanyal A. J. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology. 2001; 120 (5): 1183–92.
  7. Robertson G., Leclercq I., Farrell G. C. II. Cytochrome P-450 enzymes and oxidative stress //American Journal of Physiology-Gastrointestinal and Liver Physiology. 2001; 281 (5): G1135–39.
  8. Hardwick R.N., Fisher C.D., Canet M.J., Lake A.D. et al. Diversity in antioxidant response enzymes in progressive stages of human nonalcoholic fatty liver disease. Drug Metab. Dispos. 2010; 38 (12): 301–2293.
  9. Kaurov Ya.V. Sposob sozdaniya modeli gepatita i cirroza pecheni mlekopitayushhih. Pat. RF №94026117; 1996; G 09V23128.
  10. Myshkin V.A., Ibatullina R.B., Volkova E.S. Sposob modelirovaniya toksicheskoy gepatopatii. Pat. №2188457; 2002.
  11. Kudo H. Lipopolysaccharide triggered TNF--induced hepatocyte apoptosis in a murine non-alcoholic steatohepatitis model. Journal of hepatology. 2009; 51 (1): 168–75.
  12. Anstee Q.M., Goldin R.D. Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int. J. Exp. Pathol. 2006; 87 (1): 1–16.
  13. Pickens M. K. et al. Dietary sucrose is essential to the development of liver injury in the methionine-choline-deficient model of steatohepatitis // Journal of lipid research. 2009; 50 (10): 2072–82.
  14. Rinella M. E., Green R. M. The methionine-choline deficient dietary model of steatohepatitis does not exhibit insulin resistance. Journal of hepatology. 2004;40 (1): 47–51.
  15. Ip E. Administration of the potent PPARα agonist, Wy 14,643, reverses nutritional fibrosis and steatohepatitis in mice. Hepatology. 2004; 39 (5): 1286–96.
  16. Yamaguchi K. et al. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology. 2007; 45 (6): 1366–74.
  17. Ivashkin V.T., Lapina T.L. Gastroe`nterologiya: nacional`noe rukovodstvo. GE`OTAR-Media, 2013.
  18. Hazanov A.I. Vozmozhnosti progressirovaniya alkogol`nogo i nealkogol`nogo steatogepatita v cirroz pecheni. Ros. zhurn. gastroe`nterol., gepatol. i koloproktologii. 2005; 15 (2): 26–32.
  19. Rolo A.P., Teodoro J.S., Palmeria C.M. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic. Biol. Med. 2012; 1 (1): 59–69.
  20. Pozharitskaya O.N., Shikov A.N., Laakso I., Seppänen-Laakso T., Makarenko I.E., Faustova N.M., Makarov V.G. Bioactivity and chemical characterization of gonads of green sea urchin Strongylocentrotus droebachiensis from Barents Sea // Journal of Functional Foods. 2015; 17: 227–23.
  21. Shahin Merat et al. A Modification of the Brunt System for Scoring Liver Histology of Patients with Non-Alcoholic Fatty Liver Disease. Arch. Iran Med. 2010; 13 (1): 38–44.
  22. Machado M.V., Michelotti G.A., Xie G., de Almeida T.P., Boursier J., Bohnic B., Guy C.D., Diehl A.M. Mouse model of diet-induced nonalcoholic steatohepatitis reproduce the heterogeneity of the human disease. PLoS ONE. 2015; 10 (6): e0132315. DOI: 10.1371.

You may be interested