Diet-Induced Models Of Metabolic Disturbances. Report 2: Experimental Obesity

DOI: 10.29296/2618723X-2018-02-05

M. Makarova, Director, V. Makarov, Doctor of Medicine, prof., Deputy dir. of science JSC «Research-and-manufacturing company «Houm оf Pharmacy» JSC «Research-and-manufacturing company «Houm оf Pharmacy», 188663, Russia, Leningradskiy region, Vsevolozhskiy district, Kuzmolovskiy, st. Zavodskaya, 3. b. 245 Е-mail: [email protected]


Keywords: obesity diet-induced model

For citation:

Makarova M., Makarov V. Diet-Induced Models Of Metabolic Disturbances. Report 2: Experimental Obesity. Laboratory Animals for Science. 2018; 2. https://doi.org/10.29296/2618723X-2018-02-05

Abstract

Obesity, the increase in the incidence of which has been observed in recent years, is a risk factor for cardiovascular diseases, type 2 diabetes and many others, which necessitates the search for means of its prevention and treatment. Obesity, both in humans and animals, is based on excessive nutrition and insufficient physical activity, so experimental models in animals (rodents, mini-pigs, etc.) allow to simulate quite accurately the picture of the disease. Given the etiology of obesity, the closest to humans are diet-induced obesity models, among which the most effective are high-fat, less effective are high-fat and carbohydrate combined models; high-carb and low-fat models are little effective. To accelerate the development of obesity it is necessary to use hypokinesia, increase the dark period in vivarium, the use of Mature animals and other measures. Evaluation of the effectiveness of the studied therapeutic and preventive measures in animals with obesity should be carried out with the help of anthropometric indicators (length and body weight, abdomen circumference, Shin length, etc.), evaluation of body weight and fat in them, as well as physiological (blood pressure, etc.) and biochemical parameters (leptin, ghrelin, insulin resistance, adiponectin, etc.).

References

  1. Agahi A., Murphy K.G. Models and Strategies in the Development of Antiobesity Drugs. Vet. Pathol., 2014 May; 51 (3): 695–706. doi: 10.1177/0300985813492801.
  2. Cordero P., Li J., Oben J.A. Epigenetics of obesity: beyond the genome sequence. Curr. Opin. Clin. Nutr. Metab. Care. 2015, 18: 361–6. doi:10.1097/MCO.0000000000000179.
  3. Makarova M.N., Makarov V.G. Diet-inducirovannye modeli metabolicheskih narusheniy. Soobshhenie 1: E`ksperimental`nyy metabolicheskiy sindrom. Laboratornye zhivotnye dlya nauchnyh issledovaniy. 2018; 1.
  4. Woodie L.N., Luo Y., Wayne M.J., Graff E.C., Ahmed B., O’Neill A.M., Greene M.W., Restricted feeding for 9h in the active period partially abrogates the detrimental metabolic effects of a Western diet with liquid sugar consumption in mice. Metabolism. 2017. Dec 15. pii: S0026-0495(17)30341-4. doi: 10.1016/j.metabol.2017.12.004.
  5. Segal-Lieberman G., Rosenthal T. Animal Models in Obesity and Hypertension. Curr. Hypertens. Rep. 2013; 15:190–195. doi: 10.1007/s11906-013-0338-3.
  6. Osto M., Lutz T.A. Translational value of animal models of obesity – Focus on dogs and cats. Eur. J. Pharmacol. 2015 Jul 15;759:240-52. doi: 10.1016/j.ejphar.2015.03.036.
  7. Hansen B.C. Causes of Obesity and Consequences of Obesity Prevention in Non-human Primates and Other Animal Models. In: International Textbook of Obesity. Edited by Per Bjorntorp. – John Wiley & Sons Ltd, 2001: 181–201.
  8. Lutz T.A., Woods S.C. Overview of Animal Models of Obesity. In: Animal Models of Disease. Current Protocols in Pharmacology, John Wiley & Sons, Inc. 2012; 5.61.1–5.61.18. doi: 10.1002/0471141755.ph0561s58.
  9. York D.A. Lessons from animal models of obesity. Endocrinol. Metab. Clin. North Am. 1996 Dec; 25 (4):781–800.
  10. Kim H.J., Kim S., Lee A.Y., Jang Y., Davaadamdin O., Hong S.-H., Kim J.S., Cho M.-H. The Effects of Gymnema sylvestre in High-Fat Diet-Induced Metabolic Disorders. Amer. J. Chin. Med., 2017. Vol. 45; 4: 1–20. doi: 10.1142/S0192415X17500434.
  11. Stranahan A.M. Models and mechanisms for hippocampal dysfunction in obesity and diabetes. Neurosci. 2015 November 19; 309: 125–39. doi: 10.1016/j.neuroscience.2015.04.045.
  12. Thibault L. Animal Models of Dietary-Induced Obesity. In: Animal Models for the Study of Human Disease, edited By P. M. Conn. Academic Press, Elsevier Inc. 2013; 277–303. doi: 10.1016/B978-0-12-415894-8.00013-0.
  13. Kleinert M., Clemmensen C., Hofmann S.M., Moore M.C., Renner S., Woods S.C., Huypens P., Beckers J., de Angelis M.H., Schürmann A., Bakhti M., Klingenspor M., Heiman M., Cherrington A.D., Ristow M., Lickert H., Wolf E., Havel P.J., Müller T.D., Tschöp M.H. Animal models of obesity and diabetes mellitus. Nat. Rev. Endocrinol., 2018; 14 (3): 140–62. doi: 10.1038/nrendo.2017.161.
  14. Guerre-Millo M. Chapter 18. Animal Models of Obesity. In: J.-P. Bastard and B. Fève (eds.), Physiology and Physiopathology of Adipose Tissue. Springer-Verlag, France, 2013; 255–66. doi: 10.1007/978-2-8178-0343-2_18.
  15. Ochoa M., Val-Laillet D., Lallès J.P., Meurice P., Malbert C.H. Obesogenic diets have deleterious effects on fat deposits irrespective of the nature of dietary carbohydrates in a Yucatan minipig model. Nutr Res. 2016; 36 (9): 947–54. doi: 10.1016/j.nutres.2016.07.003.
  16. Hariri N., Thibault L. High-fat diet induced obesity in animal models. Nutr. Res. Rev., 2010; 23; 2: 270–99. doi:10.1017/S0954422410000168.
  17. Ojo B., Simenson A.J., O’Hara C., Wu L., Gou X., Peterson S.K., Lin D., Smith B.J., Lucas E.A. Wheat germ supplementation alleviates insulin resistance and cardiac mitochondrial dysfunction in an animal model of diet-induced obesity. Br. J. Nutr. 2017; 118 (4): 241–9. doi: 10.1017/S0007114517002082.
  18. Karimi G., Jamaluddin R., Mohtarrudin N., Ahmad Z., Khazaai H., Parvaneh M. Single-species versus Dual-species Probiotic Supplementation as an Emerging Therapeutic Strategy for Obesity. Nutr. Metab. Cardiovasc. Dis. 2017; 27 (10): 910–8. doi: 10.1016/j.numecd.2017.06.020.
  19. Zhao H., Li K., Tang J.Y., Zhou J.C., Wang K.N., Xia X.J., Lei X.G. Expression of Selenoprotein Genes Is Affected by Obesity of Pigs Fed a High-Fat Diet. J. Nutr., 2015; 145 (7): 1394–401. doi: 10.3945/jn.115.211318.
  20. Vickers S.P., Jackson H.C., Cheetham S.C. The utility of animal models to evaluate novel anti-obesity agents. Br. J. Pharmacol. 2011; 164 (4): 1248–62. doi: 10.1111/j.1476-5381.2011.01245.x.
  21. Kanasaki K., Koya D. Biology of Obesity: Lessons from Animal Models of Obesity. J. Biomed. Biotechnol., 2011. Vol. 2011, Article ID 197636, 11 pages. doi:10.1155/2011/197636.
  22. Rosini T.C., da Silva A.S.R., de Moraes C. Diet-induced obesity: rodent model for the study of obesity-related disorders. Rev. Assoc. Med. Bras. 2012; 58 (3): 383–7.
  23. Arias-Mutis O.J., Marrachelli V.G., Ruiz-Saurí A., Alberola A., Morales J.M., Such-Miquel L., Monleon D., Chorro F.J., Such L., Zarzoso M. Development and characterization of an experimental model of diet-induced metabolic syndrome in rabbit. PLOS ONE, May 23, 2017; 18. DOI: 10.1371/journal.pone.0178315. eCollection 2017.
  24. Takahashi H., Hosono K., Endo H., Nakajima A. Colon epithelial proliferation and carcinogenesis in diet-induced obesity. Journal of Gastroenterology and Hepatology 2013; 28 (Suppl. 4): 41–7. doi:10.1111/jgh.12240.
  25. Samout N., Ettaya A., Bouzenna H., Ncib S., Elfeki A., Hfaiedh N. B eneficial effects of Plantago albicans on high-fat diet-induced obesity in rats. Biomed. Pharmacother., 2016 Dec; 84: 1768–1775. doi: 10.1016/j.biopha.2016.10.105.
  26. 26. Amri Z., Ghorbel A., Turki M., Akrout F.M., Ayadi F., Elfeki A., Hammami M. Effect of pomegranate extracts on brain antioxidant markers and cholinesterase activity in high fat-high fructose diet induced obesity in rat model. BMC Complement. Altern. Med., 2017. Jun 27; 17 (1): 339–9. doi: 10.1186/s12906-017-1842-9.
  27. Eppel G.A., Armitage J.A., Eikelis N., Head G.A., Evans R.G. Progression of cardiovascular and endocrine dysfunction in a rabbit model of obesity. Hypertens. Res., 2013 Jul; 36 (7): 588–95. doi: 10.1038/hr.2013.2.
  28. Larsen M.O., Rolin B., Wilken M., Carr R.D., Svendsen O. High-Fat High-Energy Feeding Impairs Fasting Glucose and Increases Fasting Insulin Levels in the Gettingen Minipig: Results from a Pilot Study. Ann. N.Y. Acad. Sci. 2002 Jun; 967: 414–23.
  29. Liang T., Alloosh M., Bell L.N., Fullenkamp A., Saxena R., Van Alstine W., Bybee P., Werling K., Sturek M., Chalasani N., Masuoka H.C. Liver Injury and Fibrosis Induced by Dietary Challenge in the Ossabaw Miniature Swine. PLoS ONE, 2015. 10(5): e0124173. doi:10.1371/journal.pone.0124173.
  30. Newell-Fugate A.E., Lenz K., Skenandore C., Nowak R.A., White B.A., Braundmeier-Fleming A. Effects of coconut oil on glycemia, inflammation, and urogenital microbial parameters in female Ossabaw mini-pigs. PLoS One. 2017 Jul 13; 12 (7): 20: e0179542. doi: 10.1371/journal.pone.0179542. eCollection 2017.
  31. Newell-Fugate A.E., Taibl J.N., Clark S.G., Alloosh M., Sturek M, Krisher R.L. Effects of Diet-Induced Obesity on Metabolic Parameters and Reproductive Function in Female Ossabaw Minipigs. Comp. Med., 2014; 64 (1): 44–9.

You may be interested