Reference intervals of mass coefficients of internal organs of guinea pigs

Original article

УДК 615.076.9: 591.1
DOI: 10.57034/2618723X-2023-03-05

A.Yu. Borodina,
junior researcher

Research and manufacturing company “Home оf Pharmacy”,
188663, Russia, Leningrad oblast, Vsevolozhskiy district, Kuzmolovskiy t.s., Zavodskaya st. 3–245.

E-mail: [email protected]


Keywords: preclinical studies robust method reference interval guinea pigs organs weight

Acknowledgements

The study was performed without external funding.


For citation:

Borodina A.Yu. Reference intervals of mass coefficients of internal organs of guinea pigs. Laboratory Animals for Science. 2023; 3. https://doi.org/10.57034/2618723X-2023-03-05

Abstract

In toxicological studies for the detection of target organs, organ mass coefficients and absolute organ weights of laboratory animals are one of the monitored parameters. The aim of this study is to determine reference intervals of organ mass coefficients in relation to body weight and brain weight, and absolute organ weights in guinea pigs. The indirect method of obtaining reference values was used to determine reference intervals, and data from 40 male and 61 female outbred guinea pigs obtained during animal health monitoring from 2021 to 2023 were included in the analysis. The initial step in obtaining reference intervals is to determine the presence of statistical outliers and their exclusion, for each parameter evaluated separately. Reference intervals were established based on Clinical and Laboratory Standards Institute recommendations for mass coefficient and absolute values of heart, lung, thymus, liver, spleen, kidney, adrenal glands, brain, testes, and ovaries. Due to the small number of reference values (less than 120), a robust method of calculating reference intervals with confidence intervals was used. To improve the prognostic significance of the obtained reference intervals, it is necessary to increase the size of the analysed sample of reference values (more than 120). From the perspective of bioethical norms, a retrospective approach to obtaining additional reference values should be used to achieve this goal.

Conflict of interest

The author declare no conflict of interest.

  1. OECD T. N. 410. Guideline for testing of chemicals. Repeated Dose Dermal Toxicity: 21/28-day Study N. 410. 1981.
  2. OECD T. N. 411. Guideline for testing of chemicals. Subchronic Dermal Toxicity: 90-day Study. N. 411. 1981.
  3. ICH S10. Photosafety Evaluation of Pharmaceuticals. Guidance for Industry. 2015.
  4. OECD T. N. 406. Guideline for testing of chemicals. Skin Sensitisation. N. 406. 2022.
  5. FELASA recommendations for the health monitoring of mouse, rat, hamster, guinea pig and rabbit colonies in breeding and experimental units. 2014.
  6. Директива 2010/63/EU Европейского парламента и Совета Европейского союза по охране животных, используемых в научных целях. Санкт-Петербург, 2012.

References

  1. Lin P.L., Flynn J.A.L. Tuberculosis research using nonhuman primates // Nonhuman primates in biome­dical research. Academic Press. 2012. P. 173–196. DOI: 10.1016/B978-0-12-381366-4.00003-1.
  2. Hargaden M., Singer L. Anatomy, physiology, and behavior // The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents. Academic Press, 2012. P. 575–602. DOI: 10.1016/B978-0-12-380920-9.00020-1.
  3. Huneke R.B. Basic experimental methods // The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents. Academic Press, 2012. P. 621–635. DOI: 10.1016/B978-0-12-380920-9.00022-5.
  4. Каргопольцева Д.Р., Крышень К.Л., Кательникова А.Е. и др. Опыт применения теста максимизации Магнуссона и Клигмана на морских свинках при оценке сенсибилизирующего потенциала химических веществ // Лабораторные животные для научных исследований. 2018. № 4. C. 74–87. [Kargo­poltseva D., Kryshen K., Katelnicova A. et al. Opyt primeneniya testa maksimizacii Magnussona i Kligmana na morskih svinkah pri ocenke sensibiliziruyushchego potenciala himicheskih veshchestv // Laboratornye zhivotnye dlya nauchnyh issledovanij. 2018. N. 4. P. 74–87. (In Russ.)]. DOI: 10.29296/2618723X-2018-04-06.
  5. Geffré A., Concordet D., Braun J.-P. et al. Reference Value Advisor: a new freeware set of macroinstructions to calculate reference intervals with Microsoft Excel // Veterinary Clinical Pathology. 2011. Vol. 40. P. 107–112. DOI: 10.1111/j.1939-165X.2011.00287.x.
  6. Евгина С.А., Савельев Л.И. Современные теория и практика референтных интервалов // Лабораторная служба. 2019. Т. 8. № 2. С. 36–44. [Evgina S.A., Savel’ev L.I. Sovremennye teoriya i praktika referentnykh intervalov // Laboratornaya sluzhba. 2019. T. 8. N. 2. P. 36–44. (In Russ.)]. DOI: 10.17116/labs2019802136.
  7. CLSI Document C28-A3c. Defining, establishing, and verifying reference intervals in the clinical laboratory; approved guideline, third edition. Wayne, Pa., USA: CLSI, 2010.
  8. Friedrichs K.R., Harr K.E., Freeman K.P. et al. ASVCP reference interval guidelines: determination of de novo reference intervals in veterinary species and other rela­ted topics // Veterinary clinical pathology. 2012. Vol. 41. N. 4. P. 441–453. DOI: 10.1111/vcp.12006.
  9. Horn P. S., Pesce A.J. Copeland B.E. A robust approach to reference interval estimation and evaluation // Clinical chemistry. 1998. Vol. 44. N. 3. P. 622–631. DOI: 10.1093/clinchem/44.3.622.

Received: 2023-06-20
Reviewed: 2023-08-10
Accepted for publication: 2023-09-13

You may be interested