Diet-Induced Models Of Metabolic Disorders. Report 4: Experimental Nonalcoholic Fatty Liver Disease

М.N. Makarova, Doctor of Medicine, Director, V.G. Makarov, Doctor of Medicine, Professor, Deputy dir. of science JSC «Research-and-manufacturing company «Houm оf Pharmacy», Russia, 188663, Leningradskiy region, Vsevolozhskiy district, Kuzmolovskiy, st. Zavodskaya, 3. b. 245 Е-mail:


Summary. Nonalcoholic fatty liver disease (NAFLD) is one of the most frequently diagnosed chronic liver diseases, in the etiology of which a special role is played by increasing the proportion of sucrose, fructose and fat in the structure of the diet of the population. NAFLD is dangerous as complications from the liver (cirrhosis, liver cancer, etc.), and the impact on the growth of cardiovascular disease. In this regard, diet-induced models appear to be the most appropriate for use in animal experiments to assess the effectiveness of methods and means of prevention and treatment of NAFLD. As the literature analysis showed, rodents (mice, rats, rarely – Guinea pigs and hamsters) are most often used for NAFLD modeling, males are preferable, who develop liver disorders faster than females. Of large animals, such as mini-pigs, it is recommended to use lines with the rapid development of NAFLD, in particular, miniature pigs Lee-Sung. The most effective models for the rate of development and intensity of pathological changes in the liver are those using methionine- and choline-deficient diet, but the most adequate pathogenesis of human NAFLD development are those with high fat and carbohydrate content such as Western and/or Fast-food diets. Therefore, the use of diets with high fat and carbohydrate content on the background of methionine and choline deficiency is promising. To evaluation the development of NAFLD and the effectiveness of the studied therapeutic and prophylactic measures in animals the next indicators of the liver state are used: ALT, AST, liver triglycerides and mass, histology and histochemistry of liver tissue, etc.). In addition, widely used markers of inflammation (IL-6, TNF-α, CRP), the study of serum albumin, triglycerides and cholesterol, fasting glucose and insulin, insulin resistance and others.


  1. Haas J.T., Francque S., Staels B. Pathophysiology and Mechanisms of Nonalcoholic Fatty Liver Disease. Annu. Rev. Physiol. 2016. 78:18.1–18.25. doi: 10.1146/annurev-physiol-021115-105331.
  2. Butorova L.I. Nealkogol`naya zhirovaya bolezn` pecheni kak proyavlenie metabolicheskogo sindroma: e`pidemiologiya, patogenez, osobennosti klinicheskogo proyavleniya, principy diagnostiki, sovremennye vozmozhnosti lecheniya. Posobie dlya vrachey. M.; 2012: 58.
  3. Liang D., Chen H., Zhao L., Zhang W., Hu J., Liu Z., Zhong P., Wang W., Wang J., Liang G. Inhibition of EGFR attenuates fibrosis and stellate cell activation in diet-induced model of nonalcoholic fatty liver disease. Biochim. Biophys. Acta. 2018 Jan; 1864 (1): 133–42. DOI: 10.1016/j.bbadis.2017.10.016.
  4. Kanuri G., Bergheim I. In Vitro and in Vivo Models of Non-Alcoholic Fatty Liver Disease (NAFLD). Int. J. Mol. Sci. 2013, 14, 11963–80; DOI:10.3390/ijms140611963.
  5. Bueverov A.O. Nealkogol`nyy steatogepatit. Gastroe`nterologiya: nacional`noe rukovodstvo. Pod red. V.T. Ivashkina, T.L. Lapinoy. M.: GE`OTAR-Media, 2008: 626–31.
  6. Lau J.K., Zhang X., Yu J. Animal models of non-alcoholic fatty liver disease: current perspectives and recent advances. J. Pathol., 2017; 241 (1): 36–44. DOI: 10.1002/path.4829.
  7. Wree A, Broderick L, Canbay A, Hoffman H.M., Feldstein A.E. From NAFLD to NASH to cirrhosis – new insights into disease mechanisms. Nat. Rev. Gastroenterol. Hepatol., 2013; 10 (11): 627–36. DOI: 10.1038/nrgastro.2013.149.
  8. Nakamura A., Terauchi Y. Lessons from Mouse Models of High-Fat Diet-Induced NAFLD. Int. J. Mol. Sci. 2013, 14: 21240–57; DOI:10.3390/ijms141121240.
  9. Sellmann C., Baumann A., Brandt A., Jin C.J., Nier A., Bergheim I. Oral Supplementation of Glutamine Attenuates the Progression of Nonalcoholic Steatohepatitis in C57BL/6J Mice. J. Nutr. 2017 Nov; 147 (11): 2041–9. DOI: 10.3945/jn.117.253815.
  10. Kammoun H.L., Allen T.L., Henstridge D.C., Kraakman M.J., Peijs L., Rose-John S., Febbraio M.A. Over-expressing the soluble gp130-Fc does not ameliorate methionine and choline deficient diet-induced non alcoholic steatohepatitis in mice. PLoS One. 2017 Jun 20; 12 (6): e0179099. DOI: 10.1371/journal.pone.0179099.
  11. Charlton M., Krishnan A., Viker K. et al. Fast food diet mouse: novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am. J. Physiol. Gastrointest. Liver Physiol. 2011 Nov; 301 (5): 825–34. DOI: 10.1152/ajpgi.00145.2011.
  12. Krishnan A., Abdullah T.S., Mounajjed T. et al. Longitudinal Study of Whole Body, Tissue and Cellular Physiology in a Mouse Model of Fibrosing NASH with High Fidelity to the Human Condition. Am. J. Physiol. Gastrointest. Liver Physiol. 2017 Jun 1; 312 (6): 666–80. DOI: 10.1152/ajpgi.00213.2016.
  13. Van Herck M.A., Vonghia L., Francque S.M. Animal Models of Nonalcoholic Fatty Liver Disease—A Starter’s Guide. Nutrients. 2017 Sep 27; 9 (10). pii: E1072. DOI: 10.3390/nu9101072.
  14. Kucera O., Cervinkova Z. Experimental models of non-alcoholic fatty liver disease in rats. World J. Gastroenterol., 2014 Jul 14; 20 (26): 8364–76. DOI: 10.3748/wjg.v20.i26.8364.
  15. Cheah I.K., Tang R., Ye P. et al. Liver ergothioneine accumulation in a guinea pig model of nonalcoholic fatty liver disease. A possible mechanism of defence? Free Radic. Res., 2016; 50 (1): 14–25. DOI: 10.3109/10715762.2015.1099642.
  16. Lai Y.S., Yang T.C., Chang P.Y. et al. Electronegative LDL is linked to high-fat, high-cholesterol diet-induced nonalcoholic steatohepatitis in hamsters. J. Nutr. Biochem. 2016 Apr; 30: 44–52. DOI: 10.1016/j.jnutbio.2015.11.019.
  17. Yang, S.L., Xia J.H., Zhang Y.Y. et al. Hyperinsulinemia shifted energy supply from glucose to ketone bodies in early nonalcoholic steatohepatitis from high-fat high-sucrose diet induced Bama minipigs. Sci. Rep. 5, 13980 (2015). DOI: 10.1038/srep13980.
  18. Pejnovic N., Jeftic I., Jovicic N. et al. Galectin-3 and IL-33/ST2 axis roles and interplay in diet-induced steatohepatitis. World J. Gastroenterol., 2016; 22(44): 9706–17. DOI: 10.3748/wjg.v22.i44.9706.
  19. Panchal S.K., Brown L. Rodent Models for Metabolic Syndrome Research / J. Biomed. Biotechnol. Volume 2011, Article ID 351982, 14 pages. DOI:10.1155/2011/351982.
  20. Li S.J., Ding S.T., Mersmann H.J. et al. A nutritional nonalcoholic steatohepatitis minipig model. J. Nutr. Biochem. 2016 Feb; 28: 51–60. DOI: 10.1016/j.jnutbio.2015.09.029.
  21. Xie Y., Zhang H., Jin C. et al. Gd-OB-DTPA-enhanced T1ρ imaging vs diffusion metrics for assessment liver inflammation and early stage fibrosis of nonalcoholic steatohepatitis in rabbits. Magn. Reson. Imaging, 2018 May; 48: 34–41. DOI: 10.1016/j.mri.2017.12.017.
  22. Kim E.J., Kim B.H., Seo H.S., Lee Y.J., Kim H.H., Son H.H., Choi M.H. Cholesterol-induced non-alcoholic fatty liver disease and atherosclerosis aggravated by systemic inflammation. PLoS One. 2014 Jun 5; 9 (6): e97841. DOI: 10.1371/journal.pone.0097841.

You may be interested