Soil nematode Caenorhabditis elegans as a model to study parasitic Nematoda

Review

УДК 595.132+615.284
DOI: 10.57034/2618723X-2024-01-07

T.B. Kalinnikova,
PhD in Biology, Leading researcher,
https://orcid.org/0000-0001-8849-3425

Research Institute for Problems of Ecology and Mineral Wealth Use of TatarstanAcademy of Sciences,
420089, Russia, Kazan, Daurskaya str., 28.

E-mail: [email protected]


Keywords: Caenorhabditis elegans parasitic Nematoda nematicides

Acknowledgements

The study was performed without external funding.


For citation:

Kalinnikova T.B. Soil nematode Caenorhabditis elegans as a model to study parasitic Nematoda. Laboratory Animals for Science. 2024; 1. https://doi.org/10.57034/2618723X-2024-01-07

Abstract

The free-living soil nematode Caenorhabditis elegans has been used as model organism in biological researches since middle of the 1960th. The short lifecycle, small body size, high fecundity, simplicity and cheapness of cultivation in laboratory, and safety for researchers are advantages of C. elegans as experimental model to study biology of Metazoa. The discussion about the possibility to use C. elegans as the model for parasitic nematodes started with the first mention of this nematode in scientific literature. The present article is the review of experimental studies demonstrating that in many cases substances toxic for C. elegans are also toxic for parasitic nematodes, and vice versa. This allows making a conclusion about the prospectivity to use C. elegans for initial screening for substances with nematicidal activity followed by their testing in experiments with parasitic nematodes. The possibility to use C. elegans for understanding mechanisms of nematicides action is also indisputable. On the whole one may conclude that C. elegans is a useful model both for searching new substances with anthelmintic activity and solution of the problem to overcome drug resistance of helmints.

Conflict of interest

The author declares no conflict of interest.

References

  1. Brenner S. The genetics of Caenorhabditis elegans // Genetics. 1974. Vol. 77. P. 71–94. DOI: 10.1093/genetics/77.1.71.
  2. Salinas G., Risi G. Caenorhabditis elegans: nature and nurture gift to nematode parasitologists // Parasitiology. 2018. Vol. 145. P. 979–987. DOI: 10.1017/S0031182017002165.
  3. Corsi A.K., Wightman B., Chalfie M. A transparent window into biology: A primer on Caenorhabditis elegans // Genetics. 2015. Vol. 200. P. 387–407. DOI: 10.1534/genetics.115.176099.
  4. Bürglin T.R., Lobos E., Blaxter M.L. Caenorhabditis elegans as a model for parasitic nematodes // Internatio­nal Journal for Parasitology. 1998. Vol. 28. P. 395–411. DOI: 10.1016/s0020-7519(97)00208-7.
  5. Geary T.G., Thompson D.P. Caenorhabditis elegans: how good a model for veterinary parasites? // Ve­terinary parasitology. 2001. Vol. 101. P. 371–386. DOI: 10.1016/s0304-4017(01)00562-3.
  6. Holden-Dye L., Walker R.J. Anthelmintic drugs and nematicides: studies in Caenorhabditis elegans // Wormbook. 2014. N. 16. P. 1–29. DOI: 10.1895/wormbook.1.143.2.
  7. Dent J.A. What can Caenorhabditis elegans tell us about nematocides and parasites? // Biotechnology and Bioprocess Engineering. 2001. Vol. 6. P. 252–263. DOI: 10.1007/bf02931986.
  8. Hahnel S.R., Dilks C.M., Heisler I., Andersen E.C., Kulke D. Caenorhabditis elegans in anthelmintic research — Old model, new perspectives // International Journal for Para­sitology: Drugs and Drug Resistance. 2020. Vol. 14. P. 237–248. DOI: 10.1016/j.ijpddr.2020.09.005.
  9. Schafer W. Nematode nervous system // Current Bio­logy. 2016. Vol. 26. P. R955–R959. DOI: 10.1016/j.cub.2016.07.044.
  10. Li C., Kim K. Neuropeptides // WormBook, ed. The C. elegans Research Community. 2008. DOI: 10.1895/wormbook.1.142.1.
  11. Parkinson J., Mitreva M., Whitton C. et al. A transcriptomic analysis of the phylum Nematoda // Nature Genetics. 2004. Vol. 36. P. 1259–1267. DOI: 10.1038/ng1472.
  12. Mathew M.D., Mathew N. D., Miller A. et al. Using C. ele­gans forward and reverse genetics to identify new compounds with anthelmintic activity // PLoS Neglec­ted Tropical Diseases. 2016. Vol. 10. P. e0005058. DOI: 10.1371/journal.pntd.0005058.
  13. Burns A.R., Luciani G.M., Musso G. et al. Caenorhabditis elegans is a useful model for anthelmintic discovery // Nature Communications. 2015. Vol. 6. Article 7485. DOI: 10.1038/ncomms8485.
  14. Taylor C.M., Wang Q., Rosa B.A. et al. Discovery of anthelmintic drug targets and drugs using chokepoints in nematode metabolic pathways // PLoS Pathogens. 2013. Vol. 9. P. e1003505. DOI: 10.1371/journal.ppat.1003505.
  15. Kaminsky R., Ducray P., Jung M. et al. A new class of anthelmintic effective against drug-resistant nematodes // Nature. 2008. Vol. 452. P. 176–181. DOI: 10.1038/nature06722.
  16. Kita K., Takamiya S. Electron-transfer complexes in Ascaris mitochondria // Advances in Parasitology. 2002. Vol. 51. P. 95–131. DOI: 10.1016/s0065-308x(02)51004-6.
  17. Braeckman B.P., Houthoofd K., Vanfleteren J.R. Intermediary metabolism // Wormbook, ed. The C. elegans Research Community. 2009. DOI: 10.1895/wormbook.1.146.1.
  18. Farelli J.D., Galvin B.D., Li Z. et al. Structure of the trehalose-6-phosphate phosphatase from Brugia malayi reveals key design principles for anthelmintic drugs // PLoS Pathogens. 2014. Vol. 10. P. e1004245. DOI: 10.1371/journal.ppat.1004245.
  19. Erkut C., Gade V.R., Laxman S., Kurzchalia T.V. The glyo­xylate shunt is essential for desiccation tolerance in C. elegans and budding yeast // eLife. 2016. Vol. 5. P. e13614. DOI: 10.7554/eLife.13614.
  20. Rao A., Carta L.K., Lesuisse E., Hamza I. Lack of heme synthesis in a free-living eukaryote // Proceedings of the National Academy of Sciences USA. 2005. Vol. 102. P. 4270–4275. DOI: 10.1073/pnas.0500877102.
  21. Luck A.N., Yuan X., Voronin D. et al. Heme acquisition in the parasitic filarial nematode Brugia malayi // The FASEB Journal. 2016. Vol. 30. P. 3501–3514. DOI: 10.1096/fj.201600603R.
  22. Chitwood D.J. Biochemistry and function of nema­tode steroids // Critical Reviews in Biochemistry and Molecular Biology. 1999. Vol. 34. P. 273–284. DOI: 10.1080/10409239991209309.
  23. Butcher R.A. Small-molecule pheromones and hormones controlling nematode development // Nature Chemical Biology. 2017. Vol. 13. P. 577–586. DOI: 10.1038/nchembio.2356.
  24. Ludewig A.H., Schroeder F.C. Ascaroside signaling in C. elegans // Wormbook, ed. The C. elegans Research Community. 2013. DOI: 10.1895/wormbook.1.155.1.
  25. Kaplan R.M. Drug resistance in nematodes of veteri­nary importance: a status report // Trends in Parasitology. 2004. Vol. 20. P. 477–481. DOI: 10.1016/j.pt.2004.08.001.
  26. Sattelle D.B. Invertebrate nicotinic acetylcholine receptors — targets for chemicals and drugs important in agriculture, veterinary medicine and human health // Journal of Pesticide Science. 2009. Vol. 34. P. 233–240. DOI: 10.1584/jpestics.r09-02.
  27. Sleigh J.N. Functional analysis of nematode nicotinic receptors // Bioscience Horizons. 2010. Vol. 3. P. 29–39. DOI: 10.1093/biohorizons/hzq005.
  28. Qian H., Martin R.J., Robertson A.P. Pharmacology of N-, L-, and B-subtypes of nematode nAChR resolved at the single-channel level in Ascaris suum // The FASEB Journal. 2006. Vol. 20. P. E2108–E2116. DOI: 10.1096/fj.06-6264fje.
  29. Fleming J.T., Squire M.D., Barnes T.M. et al. Caenorhabditis elegans levamisole resistance genes lev-1, unc-29 and unc-38 encode functional nicotinic acetylcholine receptor subunits // Journal of Neuroscience. 1997. Vol. 17. P. 5843–5857. DOI: 10.1523/JNEUROSCI.17-15-05843.1997.
  30. Culetto E., Baylis H.A., Richmond J.E. et al. The Caenorhabditis elegans unc-63 gene encodes a levamisole-sensitive nicotinic acetylcholine receptor α subunit // The Journal of Biological Chemistry. 2004. Vol. 279. P. 42476–42483. DOI: 10.1074/jbc.M404370200.
  31. Gottschalk A., Almedom R.B., Schedletzky T. et al. Identification and characterization of novel nicotinic receptor associated proteins in Caenorhabditis elegans // The EMBO Journal. 2005. Vol. 24. P. 2566–2578. DOI: 10.1038/sj.emboj.7600741.
  32. Harrow I.D., Gration K.A. Mode of action of the anthelmintics morantel, pyrantel and levamisole in the muscle cell membrane of the nematode Ascaris suum // Pesticide Science. 1985. Vol. 16. P. 662–672. DOI: 10.1002/ps.2780160612.
  33. Martin R.J., Clark C.L., Trailovic S.M., Robertson A.P. Oxantel is an N-type (methyridine and nicotine) agonist not an L-type (levamisole and pyrantel) agonist // International Journal for Parasitology. 2004. Vol. 34. P. 1083–1090. DOI: 10.1016/j.ijpara.2004.04.014.
  34. Touroutine D., Fox R.M., Von Stetina S.E. et al. acr-16 encodes an essential subunit of the levamisole-resistant nicotinic receptor at the Caenorhabditis elegans neuromuscular junction // Journal of Biological Che­mistry. 2005. Vol. 280. P. 27013–27021. DOI: 10.1074/jbc.M502818200.
  35. Jones A.K., Buckingham S.D., Sattelle D. Chemistry-to-gene screens in Caenorhabditis elegans // Nature Reviews Drug Discovery. 2005. Vol. 4. P. 321–330. DOI: 10.1038/nrd1692.
  36. Schafer W.R. Genetic analysis of nicotinic signaling in worms and flies // Journal of Neurobiology. 2002. Vol. 53. P. 535–541. DOI: 10.1002/neu.10154.
  37. Pereira L., Kratsios P., Serrano-Saiz E. et al. A cellular and regulatory map of the cholinergic nervous system of C. elegans // eLIFE. 2015. Vol. 4. P. e12432. DOI: 10.7554/eLife.12432.
  38. Tomizawa M., Casida J.E. Selective toxicity of neonico­tinoids attributable to specificity of insect and mamma­lian nicotinic receptors // Annual Review of Entomology. 2003. Vol. 48. P. 339–364. DOI: 10.1146/annurev.ento.48.091801.112731.
  39. Lansdell S.J., Collins T., Goodchild J., Millar N.S. The Drosophila nicotinic acetylcholine receptor subunits Dα5 and Dα7 form functional homomeric and hete­romeric ion channels // BMC Neuroscience. 2012. Vol. 13. P. e73. DOI: 10.1186/1471-2202-13-73.
  40. Williamson S.M., Robertson A.P., Brown L. et al. The ni­cotinic acetylcholine receptors of the parasitic nema­tode Ascaris suum: formation of two distinct drug targets by varying the relative expression levels of two subunits // PLoS Pathogens. 2009. Vol. 5. P. e1000517. DOI: 10.1371/journal.ppat.1000517.
  41. Levandovsky M.M., Robertson A.P., Kuiper S. et al. Single-channel properties of N- and L-subtypes of acetylcholine receptor in Ascaris suum // International Joutnal for Parasitology. 2005. Vol. 35. P. 925–934. DOI: 10.1016/j.ijpara.2005.03.007.
  42. Qian H., Robertson A.P., Powell-Coffman J.A., Martin R.J. Levamisole resistance resolved at the single-channel le­vel in Caenorhabditis elegans // The FASEB Journal. 2008. Vol. 22. P. 3247–3254. DOI: 10.1096/fj.08-110502.
  43. Robertson A.P., Martin R.J. Ion-channels on parasite muscle: pharmacology and physiology // Invertebrate Neuroscience. 2007. Vol. 4. P. 209–217. DOI: 10.1007/s10158-007-0059-x.
  44. Campbell W.C., Fisher M.H., Stapley E.O. et al. Ivermectin: a potent new antiparasitic agent // Science. 1983. Vol. 221. P. 823–828. DOI: 10.1126/science.6308762.
  45. Dent J.A., Smith M.M., Vassilatis D.K., Avery L. The genetics of ivermectin resistance in Caenorhabditis elegans // Proceedings of the National Academy of Sciences USA. 2000. Vol. 97. P. 2674–2679. DOI: 10.1073/pnas.97.6.2674.
  46. Knox J., Joly N., Linossi E.M. et al. A survey of the kinome pharmacopeia reveals multiple scaffords and targets for the development of novel anthelmintics // Scienti­fic Reports. 2021. Vol. 11. Article 9161. DOI: 10.1038/s41598-021-88150-6.
  47. Cheng Z., Liu F., Li X. et al. EGF-mediated EGFR/ERK signaling pathway promotes germinative cell proliferation in Echinicoccus multiloularis that contributes to larval growth and development // PLoS Neglected Tropical Diseases. 2017. Vol. 11. P. e0005418. DOI: 10.1371/journal.pntd.0005418.
  48. Gelmedin V., Spiliotis M., Brehm K. Molecular characterization of MER1/2- and MKK3/6-like mitogen-activated protein kinase kinases (MAPKK) from the fox tapeworm Echinococcus multilocularis // International Journal for Parasitology. 2010. Vol. 40 P. 555–567. DOI: 10.1016/j.ijpara.2009.10.009.
  49. Schubert A., Koziol U., Cailliau K. et al. Targeting Echinococcus multilocularis stem cells by inhibition of the Polo-like kinase EmPlk1 // PLoS Neglected Tropical Disea­ses. 2014. Vol. 8. P. e2870. DOI: 10.1371/journal.pntd.0002870.
  50. de Andrade L.F., Mourão M.M., Geraldo J.A. et al. Regulation of Schistosoma mansoni development and reproduction by the mitogen-activated protein kinase signa­ling pathway // PLoS Neglected Tropical Diseases. 2014. Vol. 8. P. e2949. DOI: 10.1371/journal.pntd.0002949.
  51. Cowan N., Keiser J. Repurposing of anticancer drugs: In vitro and in vivo activities against Schistosoma mansoni // Parasites & Vectors. 2015. Vol. 13. Article 417. DOI: 10.1186/s13071-015-1023-y.
  52. Long T., Neitz R.J., Beasley R. et al. Structure-bioacti­vity relationship for benzimidazole thiophene inhibitors of Polo-Like Kinase 1 (PLK1), a potential drug target in Schistosoma mansoni // PLoS Neglected Tropical Di­seases. 2016. Vol. 10. P. e0004356. DOI: 10.1371/journal.pntd.0004356.
  53. Boulin T., Gielen M., Richmond J.E. et al. Eight genes are required for functional reconstitution of the Caenorhabditis elegans levamisole-sensitive acetylcholine receptor // Proceedings of the National Academy of Sciences USA. 2008. Vol. 105. P. 18590–18595. DOI: 10.1073/pnas.0806933105.
  54. Lalchhandama K. Anthelmintic resistance: the song remains the same // Science Vision. 2010. Vol. 10. P. 111–122.
  55. Risi G., Aguilera E., Ladós E. et al. Caenorhabditis elegans infrared-based motility assay identified new hits for nematicide drug development // Veterinary Sciences. 2019. Vol. 6. Article 29. DOI: 10.3390/vetsci6010029.
  56. Preston S., Jiao Y., Jabbar A. et al. Screening of the “Pathogen Box” identifies an approved pesticide with major anthelmintic activity against the barber’s pole worm // International Journal for Parasitology: Drugs and Drug Resistance. 2016. Vol. 6. P. 329–334. DOI: 10.1016/j.ijpddr.2016.07.004.
  57. Hamaguchi T., Sato K., Vicente C.S. L., Hasegawa K. Nematicidal action of the marigold exudate α-terthienyl: oxidative stress-inducing compound penetrates nematode hypodermis // Biology Open. 2019. Article bio038646. DOI: 10.1242/bio.038646.
  58. Montalvão S.C.L., de Castro M.T., Soares C.M.S. et al. Caenorhabditis elegans as an indicator of toxicity of Bacillus thuringiensis strains to Meloidogyne incognita race 3 // Ciência Rural. 2018. Vol. 48. P. e20170712. DOI: 10.1590/0103-8478cr20170712.
  59. Abebew D., Sayedain F.S., Bode E., Bode B.B. Uncove­ring nematicidal natural products from Xenorhabdus bacteria // Journal of Agricultural and Food Chemi­stry. 2022. Vol. 70 P. 498–506. DOI: 10.1021/acs.jafc.1c05454.
  60. Sun Y., Xie J., Tang L. et al. Isolation, identification and molecular mechanisms analysis of the nematicidal compound spectinabilin from newly isolated Streptomyces sp. DT10 // Molecules. 2023. Vol. 28. Article 4365. DOI: 10.3390/molecules28114365.

Received: 2024-01-15
Reviewed: 2024-02-01
Accepted for publication: 2024-02-15

You may be interested