Development of a bacterial infection model of Galleria mellonella larvae (greater wax moth)

Original article

УДК 615.076.7: 615.076.9: 59.083: 59.084
DOI: 10.57034/2618723X-2022-03-05

J.V. Salmova*, microbiologist, https://orcid.org/0000-0001-9891-8634
L.R. Nikiforova, microbiologist, https://orcid.org/0000-0001-8710-2023
K.Е. Borovkova, head of microbiological laboratory, https://orcid.org/0000-0003-1571-6549

Research and manufacturing company «Home оf Pharmacy»,
188663, Russia, Leningrad oblast, Vsevolozhskiy district, Kuzmolovskiy t.s., Zavodskaya st. 3-245

* E-mail: [email protected]


Keywords: antimicrobial activity alternative models virulence antibiotic sensitivity

Acknowledgements

The study was performed without external funding.


For citation:

Salmova J.V. , Nikiforova L.R., Borovkova К.E. Development of a bacterial infection model of Galleria mellonella larvae (greater wax moth). Laboratory Animals for Science. 2022; 3. https://doi.org/10.29296/2618723X-2022-03-05

Abstract

In recent years,_ Galleria mellonella_, the larvae of a large wax moth, has been widely used as an alternative model for studying bacterial infections, as well as for evaluating the effectiveness of antibacterial drugs. The advantages of this model system are the absence of bioethical restrictions, the possibility of using a large number of animals in the experiment, as well as a short life cycle. The larvae can grow in a wide temperature range from 18 to 37 °C, allowing the study of human pathogens in this model, which in most cases require incubation at 37 °C. Despite the absence of acquired immunity in insects, the innate immunity of wax moths has significant similarities with the immune response of vertebrates, including humans.

The aim of the work was to develop a model of bacterial infection of larvae of large wax moths including comparative evaluation of the efficiency of larval infection with reference strains of microorganisms and their clinical isolates as well as evaluation of the effectiveness of Rifampicin (PJSC Krasfarma, Russia) and Ciprofloxacin (Elfa Laboratories, India) drugs on infected larvae.

This study included three consecutive stages; at the first stage, comparative assessment of the virulence of reference strains of Staphylococcus aureus, Streptococcus pneumoniae, Escherichia coli and their clinical isolates was performed, and an infectious dose of bacterial suspension for injection in larvae was determined. Thus, it was found that the studied clinical isolates of St. aureus, Str. pneumoniae and E. coli were more virulent relative to the reference strains of microorganisms.

At the second stage of the study, in vitro minimum suppressive concentration (MSC) was determined for each microorganism strain, which allowed to determine the sensitivity of the strains to the studied antibiotics, namely Ciprofloxacin and Rifampicin.

At the third stage, after infecting the larvae with an infectious dose, antibiotic therapy was administered. The results obtained in the third stage confirmed the results of the second stage in vitro. The death of larvae infected with resistant strains of St. aureus and E. coli to Ciprofloxacin and Rifampicin, respectively.

This model was characterized by changes in the general state of larvae (melanization, motility, cocoon formation) and animal death depending on the concentration of microorganisms in the inoculum. The applicability of this model to assess the sensitivity of bacteria to antibiotics was demonstrated using Ciprofloxacin and Rifampicin as examples.

Conflict of interest

The authors declare no conflict of interest.

Authors contribution

J.V. Salmova — research design, experimental part, collection and systematization of material, analysis and statistical processing of data, writing the text of the article.
L.R. Nikiforova — performing the experimental part, collecting and systematizing the material.
K.E. Borovkova — research concept, editing the text of the article.

References

  1. Cutuli M.A., Petronio G., Vergalito F. et al. Galleria mellonella as a consolidated in vivo model hosts: New developments in antibacterial strategies and novel drug testing // Virulence. 2019. Vol. 10. N. 1. P. 527–541. doi: 10.1080/21505594.2019.1621649.
  2. Ramarao N., Nielsen-Leroux C., Lereclus D. The insect Galleria mellonella as a powerful infection mo­del to investigate bacterial pathogenesis // Journal of Visualized Experiments. 2012. Vol. 70. P. 1–7. doi: 10.3791/4392.
  3. Tsai C.J. Y., Loh J.M., Proft T. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing // Virulence. 2016. Vol. 7. N. 3. P. 214–229. doi: 10.1080/21505594.2015.1135289.
  4. Evans B.A, Rozen D.E.A Streptococcus pneumoniae infection model in larvae of the wax moth Galleria mellonella // European Journal of Clinical Microbiology & Infectious Diseases. 2012. Vol. 31. N. 10. P. 2653–2660. doi: 10.1007/s10096‑012‑1609‑7.
  5. Ignasiak K, Maxwell A. Galleria mellonella (greater wax moth) larvae as a model for antibiotic susceptibility testing and acute toxicity trials // BMC Res. Notes. 2017. Vol. 10. N. 1. P. 428. doi: 10.1186/s13104‑017‑2757‑8.
  6. Peleg A.Y., Jara S., Monga D. et al. Galleria mellonella as a model system to study Acinetobacter baumannii pathogenesis and therapeutics // Antimicrobial agents and chemotherapy. 2009. Vol. 53. N. 6. P. 2605–2609. doi: 10.1128/AAC.01533-08.
  7. Гайдай Д.С., Гайдай Е.А., Макарова М.Н. Личинки большой восковой моли (Galleria mellonella) как модельный объект для исследования новых лекарственных средств // Международный вестник ветеринарии. 2017. № 2. С. 82–90 [Gaidai D.S., Gaidai E.A., Makarova M.N. Lichinki bol’shoi voskovoi moli (Galleria mellonella) kak model’nyi ob’ekt dlya issledovaniya novykh lekarstvennykh sredstv // Mezhdunarodnyi vestnik veterinarii. 2017. N. 2. P. 82–90 (In Russ)].
  8. Селезнева А.И., Макарова М.Н., Рыбакова А.В. Методы рандомизации животных в эксперименте // Международный вестник ветеринарии. 2014. № 2. С. 84–89 [Selezneva A.I., Makarova M.N., Rybakova A.V. Metody randomizatsii zhivotnykh v eksperimente // Mezhdunarodnyi vestnik veterinarii. 2014. N. 2. P. 84–89. (In Russ)].
  9. Harding C.R., Schroeder G.N., Collins J.W. et all. Use of Galleria mellonella as a model organism to study Legionella pneumophila infection // Journal of visua­lized experiments. 2013. N. 81. P. 1–10. doi: 10.3791/50964.
  10. Desbois A.P., Coote P.J. Wax moth larva (Galleria mellonella): an in vivo model for assessing the efficacy of antistaphylococcal agents // Journal of Antimicrobial Chemotherapy. 2011. Vol. 66. N. 8. P. 1785–1790. doi: 10.1093/jac/dkr198.
  11. Mukherjee K., Altincicek B., Hain T. et al. Galleria mellonella as a model system for studying Listeria pathogenesis // Applied And Environmental Microbio­logy. 2010. Vol. 76. N. 1. P. 310–317. doi: 10.1128/AEM.01301-09.
  12. Национальный стандарт РФ ГОСТ Р ИСО 20776-1–2010 «Клинические лабораторные исследования и диагностические тест-системы in vitro. Исследование чувствительности инфекционных агентов и оценка функциональных характеристик изделий для исследования чувствительности к антимикробным средствам. Часть 1. Референтный метод лабораторного исследования активности антимикробных агентов против быстрорастущих аэробных бактерий, вызывающих инфекционные болезни». URL: http://docs.cntd.ru/document/1200083430 (дата обращения: 10.2021) [Natsional’nyi standart RF GOST R ISO 20776-1–2010 «Klinicheskie laboratornye issledovaniya i diagnosticheskie test-sistemy in vitro. Issledovanie chuvstvitel’nosti infektsionnykh agentov i otsenka funktsional’nykh kharakteristik izdelii dlya issledovaniya chuvstvitel’nosti k antimikrobnym sredstvam. Chast’ 1. Referentnyi metod laboratornogo issledovaniya aktivnosti antimikrobnykh agentov protiv bystrorastushchikh aerobnykh bakterii, vyzyvayushchikh infektsionnye bolezni». URL: http://docs.cntd.ru/document/1200083430 (data obrashcheniya: 10.2021). (In Russ)].
  13. МУК 4.2.1890–04 «Определение чувствительности микроорганизмов к антибактериальным препаратам» [MUK 4.2.1890–04 «Opredelenie chuvstvitel’nosti mikroorganizmov k antibakterial’nym preparatam». (In Russ)].
  14. Media preparation for EUCAST disk diffusion testing and for determination of MIC values by the broth microdilution method / Version 5.0. January 2017. P. 4–5.
  15. Инструкция по медицинскому применению лекарственного препарата Рифампицин (Rifampicinum). URL: https://www.rlsnet.ru/mnn_index_id_216.htm [Instrukciya po medicinskomu primeneniyu lekarstvennogo preparata Rifampicin (Rifampicinum). URL: https://www.rlsnet.ru/mnn_index_id_216.htm (In Russ)].
  16. Инструкция по медицинскому применению лекарственного препарата Ципрофлоксацин (Ciproflo­xacin). URL: https://www.rlsnet.ru/tn_index_id_3610.htm. [Instrukciya po medicinskomu primeneniyu lekarstvennogo preparata Ciprofloksacin (Ciproflo­xacin). URL: https://www.rlsnet.ru/tn_index_id_3610.htm (In Russ)].
  17. Andrea A., Krogfelt K.A., Jenssen H. Methods and Challenges of Using the Greater Wax Moth (Galleria mellonella) as a Model Organism in Antimicrobial Compound Discovery // Microorganisms. 2019. Vol. 7. N. 3. P. 85. doi: 10.3390/microorganisms7030085.
  18. Голуб В.Б. и др. Энтомологические и фитопатологические коллекции, их составление и хранение. Воронеж: изд-во ВГУ. 1980. 228 c. [Golub V.B. et al. Entomologicheskie i fitopatologicheskie kollektsii, ikh sostavlenie i khranenie. Voronezh: izd-vo VGU. 1980. 228 p. (In Russ)].
  19. Прозоровский В.Б. Использование методов наименьших квадратов для пробит-анализа кривых летальности // Фармакология и токсикология. 1962. № 1. C. 115–119 [Prozorovskii V.B. Ispol’zovanie metodov naimen’shikh kvadratov dlya probit-analiza krivykh letal’nosti // Farmakologiya i toksikologiya. 1962. N. 1. P. 115–119. (In Russ)].

Received: 2022-05-23
Reviewed: 2022-06-21
Accepted for publication: 2022-09-01

You may be interested