Chronic bladder catheterization, but not the metabolic chambers, is suitable for collection of precise data on murine diuresis

Original article

УДК 616-092.9+615.472.5+001.891.53
DOI: 10.29296/2618723X-2022-02-01

A.A. Andreev-Andrievsky1–3*, Head of Animal Research, https://orcid.org/0000-0002-1173-8153
E.A. Lagereva2,3, Researcher, https://orcid.org/0000-0002-6701-0487
N.V. Pankova2,3, Researcher, https://orcid.org/0000-0001-7474-3665
M.A. Mashkin2,3, Researcher, https://orcid.org/0000-0002-0612-5467
V.N. Manskikh3,4, Head of the Department of Pathomorphology, https://orcid.org/0000-0002-6404-8105
O.Yu. Frolova3, Head of Laboratory Research Department, https://orcid.org/0000-0001-6614-8356
O.V. Fadeeva3, junior research fellow, https://orcid.org/0000-0001-6833-8313
E.V. Telyatnikova3, junior research fellow, https://orcid.org/0000-0002-7387-0344

1 Lomonosov Moscow State University, Faculty of Biology,
Russia, 119991, Moscow, st. Leninskiye Gory, 1, building 12;
2 Institute of Biomedical Problems, Russian Academy of Sciences,
Russia, 123007, Moscow, Khoroshevskoe shosse, 76A;
3 LLC «Research Institute of Mitoengineering of Moscow State University»,
Russia, 119991, Moscow, st. Leninskiye Gory, 1, building 73;
4 Research Institute of Physical and Chemical Biology named after A. N. Belozersky,
Russia, 119991, Moscow, st. Leninskiye Gory, 1, building 40

* e-mail: [email protected]


Keywords: urine collection awake mice bladder catheterization urinary excretion metabolic cages

Acknowledgements

The study was supported by: MSU Institute of Mitoengineering, LLC; The program of basic research of the Institute of biomedical problems RAS (theme 65.4); Russian Laboratory Animal Science Association research grant (№ NI1, 01.03.2021) and MSU (scientific assignment № 121032300071–8). The funding sources took no part in the design, data collection, analysis, interpretation, or the decision to publish.


For citation:

Andreev-Andrievsky A.A., Lagereva E.A., Pankova N.V., Mashkin M.A., Manskikh V.N., Frolova O.Yu., Fadeeva O.V., Telyatnikova E.V. Chronic bladder catheterization, but not the metabolic chambers, is suitable for collection of precise data on murine diuresis. Laboratory Animals for Science. 2022; 2. https://doi.org/10.29296/2618723X-2022-02-01

Abstract

Metabolic cages (MC) are routinely used for urine collection from small laboratory rodents over long time intervals. In the case of urine collection from individual mice, the diuresis volume measured with MC is 20–40 ml/kg. If this value is used for water balance calculations, an underestimation of 60–80 ml/kg of the excreted water becomes apparent.

In a series of model studies with murine MCs, we show that volume recovery drops sharply in case liquid is introduced into the MC in small aliquots, approximating the murine voided volume (≈0.1 ml) due to evaporation. Evaporation occurs predominantly on the MC funnel, rather than from the urine collection tube surface. MC siliconization does not lead to substantial recovery improvement. The recovery is increased to acceptable values (≈80%) with higher aliquot volumes, thus group housing of mice in MCs is a feasible option to increase urine collection efficiency. The apparent limitation of group housing mice in MCs is the loss of data individuality. It should be mentioned that animals must be habituated to the MCs to minimize impact of stress on diuresis.

We have developed a new technique of urine collection in individual mice via the catheters chronically implanted into the bladder. The technique allows to precisely monitor diuresis in awake individual male and female mice for at least 30 days. Diuresis, as registered via the catheters, is 100.0±6.9 and 135.7±28.4 ml/kg in the males and females, correspondingly, which is almost thrice higher as compared to 39.0±5.4 and 37.2±3.2 ml/kg, collected from intact male and female mice with the MCs. The physicochemical properties of the catheter-collected urine are not distorted by evaporation, particularly, urine osmolarity was 2026±47 and 1870±41 mOsm in catheterized male and female mice, as compared to 2985±78 and 3413±105 mOsm in intact males and females in MCs.

The catheterization technique is suitable for a variety of physiological, pharmacological, and toxicological studies and has a minimal negative impact on the animals’ health.

Conflict of interest

The authors declare no conflicts of interest.

Authors contribution

A.A. Andreev-Andrievsky — conception and design, data collection and analysis, drafting and reviewing the manuscript.
E.A. Lagereva — data collection and analysis, drafting and reviewing the manuscript.
N.V. Pankova — data collection and analysis, reviewing the manuscript.
M.A. Mashkin — data collection and analysis, reviewing the manuscript.
V.N. Mansky — data collection and analysis.
O.Yu. Frolova — data collection and analysis.
O.V. Fadeeva — data collection and analysis.
E.V. Telyatnikova — data collection and analysis.
All the authors have approved the version to be published.

References

  1. Trofimets E.I., Katel’nikova A.E., Kryshen’ K.L. Urine collecting samples from laboratory animals // Laboratory Animals for Science. – 2021. – P. 30–47. DOI: 10.29296/2618723X-2021-01-04.
  2. Jackson A.J., Sutherland J.C. Novel device for quantitatively collecting small volumes of urine from laboratory rats // Journal of Pharmaceutical Sciences. – 1984. – Vol. 73, N. 6. – P. 816–818. DOI: 10.1002/jps.2600730627.
  3. Rafecas I., Esteve M., Fernández-López J.A. et al. Water balance in Zucker obese rats // Comparative Biochemistry and Physiology. Part A: Physiology. – 1993. – Vol. 104. N. 4. – P. 813–818. DOI: 10.1016/0300-9629(93)90159-2.
  4. Åsrud K.S., Bjørnstad R., Kopperud R. et al. Epac1 null mice have nephrogenic diabetes insipidus with deficient corticopapillary osmotic gradient and weaker collecting duct tight junctions // Acta Physiologica. – 2020. – Vol. 256. N. 4. – P. 1–16. DOI: 10.1111/apha.13442.
  5. Mendoza L.D., Hyndman K.A. The contribution of collecting duct NOS1 to the concentrating mechanisms in male and female mice // American Journal of Physiology-Renal Physiology. – 2019. – Vol. 317. N. 3. – P. F547–F559. DOI: 10.1152/ajprenal.00180.2019.
  6. Tecniplast. Improvement of urine retrieval and separation efficiency in a metabolic cage for single mouse // Techniplast. – 2017. URL: https://www.tecniplast.it/usermedia/en/2016/brochures/metabolics_whitepaper.pdf (дата обращения: 10.07.2021).
  7. Schmidt-Nielsen B., Schmidt-Nielsen K. Pulmonary water loss in desert rodents // American Journal of Physiology-Legacy Content. –1950. – Vol. 162. N. 1. – P. 31–36. DOI: 10.1152/ajplegacy.1950.162.1.31.
  8. Andreev-Andrievskiy A.A., Lagereva E.A., Pankova N.V. et al. Chronic bladder catheterization for precise urine collection in awake mice // Journal of Pharmacological and Toxicological Methods. – 2021. – Vol. 113. – P. 107–128. DOI: 10.1016/j.vascn.2021.107128.
  9. Eichel L.S., Sessions A.E., Messing E.M. et al. Continuous bladder infusion methods for studying voiding function in ambulatory mice // Urology. – 2001. – Vol. 57. N. 6. – P. 115. DOI: 10.1016/s0090-4295(02)01810-1.
  10. Mann-Gow T.K., Larson T.R., Wøien C.T. et al. Evaluating the Procedure for Performing Awake Cystometry in a Mouse Model // Journal of Visualized Experiments. – 2017. – Vol. 123. – P. e55588. DOI: 10.3791/55588.
  11. Moro D., Bradshaw S.D. Water and sodium balances and metabolic physiology of house mice (Mus domesticus) and short-tailed mice (Leggadina lakedownensis) under laboratory conditions // Journal of Comparative Physiology B. – 1999. – Vol. 169. N. 8. – P. 538–548. DOI: 10.1007/s003600050253.
  12. Hoffman J.F, Fan A.X., Neuendorf E.H. et al. Hydrophobic Sand Versus Metabolic Cages: A Comparison of Urine Collection Methods for Rats (Rattus norvegicus) // Journal of the American Association for Laboratory Animal Science : JAALAS. – 2018. – Vol. 57. N. 1. – P. 51–57. PMID: 29402352.
  13. Barbour H.G., Trace J. Standard metabolism in the white mouse // American Journal of Physiology-Legacy Content. – 1936. – Vol. 118. N. 1. – P. 77–86.
  14. Frank C.L. Diet Selection by a Heteromyid Rodent: Role of Net Metabolic Water Production // Ecology. – 1988. – Vol. 69. N. 6. – P. 1943–1951.
  15. Morrison S.D. A method for the calculation of metabolic water // The Journal of Physiology. – 1953. – Vol. 122. N. 2. – P. 399–402. DOI: 10.1113/jphysiol.1953.sp005009.
  16. Nicolaus M.L., Bergdall V.K., Davis I.C., Hickman-Davis J.M. Effect of Ventilated Caging on Water Intake and Loss in 4 Strains of Laboratory Mice // Journal of the American Association for Laboratory Animal Science : JAALAS. – 2016. – Vol. 55. N. 5. – P. 525–33. PMID: 27657706.
  17. Aimone L.D. Overview of pharmacokinetics // Current Protocols in Pharmacology. – 2005 – Vol. 30. – N. 1. – P. 1–26. DOI: 10.1002/0471141755.ph0701s30.
  18. Waidyanatha S., Black S.R., Patel P.R. et al. Disposition and metabolism of N-butylbenzenesulfonamide in Sprague Dawley rats and B6C3F1/N mice and in vitro in hepatocytes from rats, mice, and humans // Toxicology Letters. – 2020. – Vol. 319. – P. 225–236. DOI: 10.1016/j.toxlet.2019.11.015.

Received: 2022-02-02
Reviewed: 2022-05-25
Accepted for publication: 2022-05-30

You may be interested