Lung bacterial infections. Animal models

DOI: 10.29296/2618723X-2020-02-06

L.R. Khaibunasova, microbiologist

K.Е. Borovkova, head of microbiological laboratory

J.V. Salmova, laboratory assistant

Institute of Pre-Clinical Research Ltd

188663, Russia, Leningradskiy region, Vsevolozhskiy district, Kuzmolovskiy t.s., Zavodskaya st. 3–245

Е-mail:  [email protected]


Keywords: bacterial pneumonia laboratory animals rats mice rabbits primates Streptococcus pneumoniae Klebsiella pneumoniae Pseudomonas aeruginosa

For citation:

Khaibunasova L.R, Borovkova К.E., Salmova J.V. Lung bacterial infections. Animal models. Laboratory Animals for Science. 2020; 2. https://doi.org/10.29296/2618723X-2020-02-06

Abstract

Pneumonia is the leading cause of morbidity and mortality worldwide, especially among children and the elderly people.  Nosocomial pneumonia in a hospital setting is one of the most serious infectious complications often caused by opportunistic pathogens. There is an urgent need for improved treatment and prevention of pneumonia. Therefore, animal models have been developed to better understand the pathogenesis of the disease, testing new drugs and vaccines

This review summarizes scientific studies about animal models of bacterial pneumonia as well as the main causative agents of the disease, routes of infectious agents administration and estimated parameters.

Various microorganisms such as Streptococcus pneumoniae, Legionella pneumophila, Haemophilus influenzae, Neisseria meningitidis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Acinetobacter baumannii, Klebsiella pneumoniae are considered in this review as a causative agents of bacterial pneumonia. The most popular microorganism used for modeling pneumonia is Streptococcus pneumoniae. According to data presented in scientific articles, mice, rats, rabbits, pigs and primates are used as a test system for modeling bacterial pneumonia. Mice are the most suitable animals for bacterial pneumonia studies. This type of animal is easy to handle and allows to use the sufficient number of animals for results evaluation. The main assessed parameters in pneumonia studies are data about clinical signs, survival, bacteremia, the number of bacteria in the lungs, pathological and histological characteristics, quantitative assessment of antibody titers, markers of inflammation etc.

Depending on the purpose of the study methods of bacterial inoculum administration are differ. An intravenous and intraperitoneal route of administration is used to assess virulence, an intratracheal route of administration is used to study the effectiveness of new antibiotics, and an inoculum is administered intramuscularly to animals when developing new vaccines for bacterial pneumonia the choice of animals, the type of microorganism, the method of infection and the estimated parameters depends on the tasks and research objectives.


Full text avaliable in Russain only.

Acknowledgements

The study was performed without external funding.

Autors’ contributions

L.R. Khaibunasova – literary data collection, data collection and analysis, swriting and editing of the text

M.N. Makarova – study concept and design, editing of the text, supervised the project, approved the final version of the manuscript

K.E. Borovkova – text editing, scientific advice

J.V. Salmova – formalization of the article

 

References

  1. Levison ME. Pneumonia, Including Necrotizing Pulmonary Infections (Lung Abscess) In: Braunwald E, Fauci AS, Hauser SL, Longo DL, Kasper DL, Jameson JL, editors. Harrison’s principles of internal medicine. 15. New York: McGraw-Hill; 2001. pp. 1475–1484.
  2. Quinton LJ, Walkey AJ, Mizgerd JP. Integrative Physiology of Pneumonia. Physiol Rev. 2018 Jul 1;98(3):1417-1464. doi: 10.1152/physrev.00032.2017. PMID: 29767563; PMCID: PMC6088146.
  3. Cilloniz C, Liapikou A, Martin-Loeches I, et al. Twenty-year trend in mortality among hospitalized patients with pneumococcal community-acquired pneumonia. PLoS One 2018; 13: e0200504. doi:10.1371/journal.pone.0200504.
  4. McCollum ED, King C, Hollowell R, Zhou J, Colbourn T, Nambiar B, Mukanga D, Burgess DCH. Predictors of treatment failure for non-severe childhood pneumonia in developing countries—systematic literature review and expert survey—the first step towards a community focused mHealth risk-assessment tool? BMC Pediatr. 2015;15:547. doi: 10.1186/s12887-015-0392-x.
  5. Walker CLF, Rudan I, Liu L, Nair H, Theodoratou E, Bhutta ZA, O’Brien KL, Campbell H, Black RE. Global burden of childhood pneumonia and diarrhoea. Lancet (London, England) 2013;381:1405–1416. doi: 10.1016/S0140-6736(13)60222-6
  6. Akgün KM, Crothers K, Pisani M. Epidemiology and management of common pulmonary diseases in older persons. J Gerontol a Biol Sci Med Sci 2012;67:276–91.
  7. Chastre J, Fagon JY. Pneumonia in the ventilator-dependent patient. In: Tobin MJ, editor. Principles and practice of mechanical ventilation. New York: McGraw-Hill; 1994. p. 857–890.
  8. Kollef MH, Ricard J-D, Roux D, Francois B, Ischaki E, Rozgonyi Z, et al. A randomized trial of the amikacin fosfomycin inhalation system for the adjunctive therapy of gram-negative ventilator-associated pneumonia: IASIS Trial. Chest. 2017;151:1239–46. 10.1016/j.chest.2016.11.026
  9. Yahiaoui RY, et al. Prevalence and antibiotic resistance of commensal Streptococcus pneumoniae in nine European countries. Future Microbiol. 2016;11:737–744.
  10. Mitchell TJ. 2003. The pathogenesis of streptococcal infections: from tooth decay to meningitis. Nat Rev Microbiol 1:219–230. doi:10.1038/nrmicro771] Weiser JN, Ferreira DM, Paton JC. 2018. Streptococcus pneumoniae: transmission, colonization and invasion. Nat Rev Microbiol 16:355–367. doi:10.1038/s41579-018-0001-8.
  11. Stout JE, Yu VL. Legionellosis. New Eng J Med. 1997;337:682–687. doi: 10.1056/NEJM199709043371006
  12. Correia A. M., Ferreira J. S., Borges V., Nunes A., Gomes B., Capucho R., et al. (2016). Probable Person-to-Person Transmission of Legionnaires’. Dis. N. Engl. J. Med. 374 497–498. 10.1056/NEJMc1505356
  13. van Heijnsbergen E., Schalk J. A., Euser S. M., Brandsema P. S., den Boer J. W., de Roda Husman A. M. (2015). Confirmed and potential sources of Legionella reviewed. Environ. Sci. Technol. 49 4797–4815. 10.1021/acs.est.5b00142
  14. Murphy TF, Faden H, Bakaletz LO, et al. Nontypeable Haemophilus influenzae as a pathogen in children. Pediatr Infect Dis J. 2009;28:43–48. doi: 10.1097/INF.0b013e318184dba2
  15. Peltola H. Worldwide Haemophilus influenzae type b disease at the beginning of the 21st century: global analysis of the disease burden 25 years after the use of the polysaccharide vaccine and a decade after the advent of conjugates. Clin Microbiol Rev. 2000;13:302–317. doi: 10.1128/CMR.13.2.302
  16. Christensen H., May M., Bowen L., Hickman M., & Trotter C. L. (2010). Meningococcal carriage by age: a systematic review and meta‐analysis. The Lancet Infectious Diseases, 10, 853–861. 10.1016/S1473-3099(10)70251-6
  17. Nassif X. Interaction mechanisms of encapsulated meningococci with eukaryotic cells: what does this tell us about the crossing of the blood-brain barrier by Neisseria meningitidis? Curr Opin Microbiol. 1999;2:71–77. doi: 10.1016/S1369-5274(99)80012-5
  18. Rojas-Lopez M, Monterio R, Pizza M, Desvaux M, Rosini R. Intestinal pathogenic Escherichia coli: insights for vaccine development. Front Microbiol. 2018; 9: 1–17
  19. Croxen MA, Finlay BB (2010) Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol 8:26–38
  20. Tacconelli E., Carrara E., Savoldi A., Harbarth S., Mendelson M., Monnet D. L., et al. . (2017). Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327. 10.1016/S1473-3099(17)30753-3
  21. Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, Nouwen JL. 2005. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 5:751–762. doi:10.1016/S1473-3099(05)70295-4.
  22. Demirdal T, Sari US, Nemli SA. Is inhaled colistin beneficial in ventilator associated pneumonia or nosocomial pneumonia caused by Acinetobacter baumannii? Ann Clin Microbiol Antimicrob. 2016;15(1):1–6.
  23. Bagley ST. 1985. Habitat association of Klebsiella species. Infect Control 6:52–58.
  24. Tsay RW, Siu LK, Fung CP, Chang FY. 2002. Characteristics of bacteremia between community-acquired and nosocomial Klebsiella pneumoniae infection: risk factor for mortality and the impact of capsular serotypes as a herald for community-acquired infection. Arch Intern Med 162:1021–1027. doi:10.1001/archinte.162.9.1021.
  25. Kurz C.L, Ewbank J.J. Caenorhabditis elegans: an emerging genetic model for the study of innate immunity. Nat Rev Genet 2003;4:380–390. doi:10.1038/nrg1067
  26. Russell WMS, Burch RL. The principles of humane experimental technique. Michigan: Methuen; 1959.
  27. Austrian, R. 1986. Pneumococcal pneumonia. Diagnostic, epidemiologic, therapeutic and prophylactic considerations. Chest90:738-743
  28. Ren, B., A. Szalai, S. K. Hollingshead, and D. E. Briles. 2003. Both family 1 and family 2 PspA proteins can inhibit complement deposition and confer virulence to a capsular serotype 3 strain of Streptococcus pneumoniae. Infect. Immun.71:75-85.
  29. Боровкова К.Е., Крышень А.А., Крышень К.Л., Петрова А.В., Макарова М.Н. Особенности работы с лабораторными животными в условиях микробиологической лаборатории. Лабораторные животные для научных исследований. 2019; 1. https://doi.org/10.29296/2618723X-2019-01-09
  30. Kuikka, A., J. Syrjanen, O. V. Renkonen, and V. V. Valtonen. 1992. Pneumococcal bacteraemia during a recent decade. J. Infect. 24:157-168
  31. Saladino R.A., Stack A.M., Fleisher G.R., Thompson C.M., Briles D.E., Kobzik l Siber G.R. Development of a model of low-inoculum Streptococcus pneumoniae intrapulmonary infection in infant rats. Infect. Immun. 1997;65:4701–4704.
  32. Iinuma H., Okinaga K. Prevention of pneumococcal bacteremia by immunization with type 6 pneumococcal capsular polysaccharide vaccine in splenectomized rats. J. Infect. Dis. 1989;160:66–75. doi: 10.1093/infdis/160.1.66.
  33. Piroth, L., L. Martin, A. Coulon, C. Lequeu, M. Duong, M. Buisson, H. Portier, and P. Chavanet. 1999. Development of a new experimental model of penicillin-resistant Streptococcus pneumoniae pneumonia and amoxicillin treatment by reproducing human pharmacokinetics. Antimicrob. Agents Chemother. 43:2484-2492.
  34. Kalin M. Pneumococcal serotypes and their clinical relevance. Thorax. 1998;53:159–162. doi: 10.1136/thx.53.3.159
  35. Guckian J.C., Morrey B.F., Kirby H.B. Role of lysosomes and cathepsin inhibitor in plasma during pneumococcal infection. J. Infect. Dis. 1970;122:290–302. doi: 10.1093/infdis/122.4.290.
  36. Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, Rogel-Gaillard C, Park C, Milan D, Megens HJ, Li S, Larkin DM, Kim H, Frantz LA, Caccamo M, Ahn H, Aken BL, Anselmo A, Anthon C, Auvil L, Badaoui B, Beattie CW, Bendixen C, Berman D, Blecha F, Blomberg J, Bolund L, Bosse M, Botti S, Bujie Z, Bystrom M, Capitanu B, Carvalho-Silva D, Chardon P, Chen C, Cheng R, Choi SH, Chow W, Clark RC, Clee C, Crooijmans RP, Dawson HD, Dehais P, De Sapio F, Dibbits B, Drou N, Du ZQ, Eversole K, Fadista J, Fairley S, Faraut T, Faulkner GJ, Fowler KE, Fredholm M, Fritz E, Gilbert JG, Giuffra E, Gorodkin J, Griffin DK, Harrow JL, Hayward A, Howe K, Hu ZL, Humphray SJ, Hunt T, Hornshoj H, Jeon JT, Jern P, Jones M, Jurka J, Kanamori H, Kapetanovic R, Kim J, Kim JH, Kim KW, Kim TH, Larson G, Lee K, Lee KT, Leggett R, Lewin HA, Li Y, Liu W, Loveland JE, Lu Y, Lunney JK, Ma J, Madsen O, Mann K, Matthews L, McLaren S, Morozumi T, Murtaugh MP, Narayan J, Nguyen DT, Ni P, Oh SJ, Onteru S, Panitz F, Park EW, Park HS, Pascal G, Paudel Y, Perez-Enciso M, Ramirez-Gonzalez R, Reecy JM, Rodriguez-Zas S, Rohrer GA, Rund L, Sang Y, Schachtschneider K, Schraiber JG, Schwartz J, Scobie L, Scott C, Searle S, Servin B, Southey BR, Sperber G, Stadler P, Sweedler JV, Tafer H, Thomsen B, Wali R, Wang J, Wang J, White S, Xu X, Yerle M, Zhang G, Zhang J, Zhang J, Zhao S, Rogers J, Churcher C, Schook LB. 2012. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491:393–398. doi:10.1038/nature11622.
  37. Summerfield A. Special issue on porcine immunology: An introduction from the guest editor. Dev. Comp. Immunol. 2009;33:265–266. doi: 10.1016/j.dci.2008.07.014.
  38. Aigner B, Renner S, Kessler B, Klymiuk N, Kurome M, Wunsch A, Wolf E. 2010. Transgenic pigs as models for translational biomedical research. J Mol Med (Berl) 88:653–664. doi:10.1007/s00109-010-0610-9.
  39. Marquette CH, Wermert D, Wallet F, et al. Characterization of an animal model of ventilator-acquired pneumonia. Chest 1999;115:200-9. 10.1378/chest.115.1.200
  40. Bennett RS, Huzella LM, Jahrling PB, et al. Nonhuman primate models of ebola virus disease. Curr Top Microbiol Immunol 2017; 411: 171–193.
  41. Philipp M.T., Doyle L.A., Martin D.S., Plauché G.B., Phillippi-Falkenstein K.M., Bohm R.P., Jr. A rhesus macaque model of Streptococcus pneumoniae carriage. J. Med. Primatol. 2012;41:60–66. doi: 10.1111/j.1600-0684.2011.00512.x
  42. Berendt R.F., Long G.G., Walker J.S. Influenza alone and in sequence with pneumonia due to Streptococcus pneumoniae in the squirrel monkey. J. Infect. Dis. 1975;132:689–693. doi: 10.1093/infdis/132.6.689.
  43. Kraft B.D., Piantadosi C.A., Benjamin A.M., Lucas J.E., Zaas A.K., Betancourt-Quiroz M., Woods C.W., Chang A.L., Roggli V.L., Marshall C.D., et al. Development of a novel preclinical model of pneumococcal pneumonia in nonhuman primates. Am. J. Respir. Cell Mol. Biol. 2014;50:995–1004. doi: 10.1165/rcmb.2013-0340OC.
  44. Reyes L.F., Restrepo M.I., Hinojosa C.A., Soni N.J., Shenoy A.T., Gilley R.P., Gonzalez-Juarbe N., Noda J.R., Winter V.T., de la Garza M.A., et al. A Non-Human Primate Model of Severe Pneumococcal Pneumonia. PLoS ONE. 2016;11:e0166092. doi: 10.1371/journal.pone.0166092
  45. McConnell KW, McDunn JE, Clark AT, et al. Streptococcus pneumoniae and Pseudomonas aeruginosa pneumonia induce distinct host responses. Crit Care Med 2010;38:223-41. 10.1097/CCM.0b013e3181b4a76b
  46. Rello J, Afessa B, Anzueto A, et al. Activity of a silver-coated endotracheal tube in preclinical models of ventilator-associated pneumonia and a study after extubation. Crit Care Med 2010;38:1135-40. 10.1097/CCM.0b013e3181cd12b8
  47. Miller MA, Stabenow JM, Parvathareddy J, et al. Visualization of murine intranasal dosing efficiency using luminescent Francisella tularensis: effect of instillation volume and form of anesthesia. PLoS One 2012;7:e31359. 10.1371/journal.pone.0031359
  48. Mizgerd JP, Skerrett SJ. Animal models of human pneumonia. Am J Physiol Lung Cell Mol Physiol 2008;294:L387-98. 10.1152/ajplung.00330.200753
  49. Cabrera-Benitez NE, Laffey JG, Parotto M, et al. Mechanical ventilation-associated lung fibrosis in acute respiratory distress syndrome: a significant contributor to poor outcome. Anesthesiology 2014;121:189-98. 10.1097/ALN.0000000000000264
  50. Nahum A, Hoyt J, Schmitz L, et al. Effect of mechanical ventilation strategy on dissemination of intratracheally instilled Escherichia coli in dogs. Crit Care Med 1997;25:1733-43. 10.1097/00003246-199710000-00026
  51. Lin CY, Zhang H, Cheng KC, et al. Mechanical ventilation may increase susceptibility to the development of bacteremia. Crit Care Med 2003;31:1429-34. 10.1097/01.CCM.0000063449.58029.81
  52. Cash HA, Woods DE, McCullough B, et al. A rat model of chronic respiratory infection with Pseudomonas aeruginosa. Am Rev Respir Dis 1979;119:453-9
  53. Growcott EJ, Coulthard A, Amison R, et al. Characterisation of a refined rat model of respiratory infection with Pseudomonas aeruginosa and the effect of ciprofloxacin. J Cyst Fibros. 2011;10(3):166‐174. doi:10.1016/j.jcf.2010.12.007
  54. Hodgson AE, Nelson SM, Brown MR, et al. A simple in vitro model for growth control of bacterial biofilms. J Appl Bacteriol 1995;79:87-93. 10.1111/j.1365-2672.1995.tb03128.
  55. van Heeckeren AM, Schluchter MD. Murine models of chronic Pseudomonas aeruginosa lung infection. Lab Anim 2002;36:291-312. 10.1258/002367702320162405
  56. Lewandowski T.F., Mininger C.L., Singley C.M., Sucoloski S., Rittenhouse S.A. Robust Pneumonia Model in Immunocompetent Rodents to Evaluate Antibacterial Efficacy against S. pneumoniae, H. influenzae, K. pneumoniae, P. aeruginosa or A. Baumannii. J. Vis. Exp. 2017;119:e55068
  57. Hinojosa E., Boyd A.R., Orihuela C.J. Age-associated inflammation and toll-like receptor dysfunction prime the lungs for pneumococcal pneumonia. J. Infect. Dis. 2009;200:546–554. doi: 10.1086/600870.
  58. Dietert K, Gutbier B, Wienhold SM, Reppe K, Jiang X, Yao L, Chaput C, Naujoks J, Brack M, Kupke A, Peteranderl C, Becker S, von Lachner C, Baal N, Slevogt H, Hocke AC, Witzenrath M, Opitz B, Herold S, Hackstein H, Sander LE, Suttorp N, Gruber AD. Spectrum of pathogen- and model-specific histopathologies in mouse models of acute pneumonia. PLoS One. 2017 Nov 20;12(11):e0188251. doi: 10.1371/journal.pone.0188251. PMID: 29155867; PMCID: PMC5695780.
  59. De Greeff A., Van Selm S., Buys H., Harders-Westerveen J.F., Tunjungputri R.N., De Mast Q., Van der Ven A.J., Stockhofe-Zurwieden N., De Jonge M.I., Smith H.E. Pneumococcal colonization and invasive disease studied in a porcine model. BMC Microbiol. 2016;16:102. doi: 10.1186/s12866-016-0718-3.
  60. Meurens F., Summerfield A., Nauwynck H., Saif L., Gerdts V. The pig: A model for human infectious diseases. Trends Microbiol. 2012;20:1. doi: 10.1016/j.tim.2011.11.002.

You may be interested