Methods of Visualization and Analysis of The Microcirculatory State in Veterinary and Experimental Practices

DOI: 10.29296/2618723X-2019-02-07

Vasutina (1, 4), N. Pechnikova(1–3), Ya. Toropova(1)

1 - Federal Amlazov North-West Medical Research Centre, 194156, Saint-Petersburg, Russia st. Parkhomenko Avenue 15;
2 - Saint-Petersburg State Chemical-Pharmaceutical University, 197022, Saint-Petersburg, Russia st. Professor Popov, 4;
3 - Zoological Institute, Russian Academy of Sciences 199034, Saint-Petersburg, Russia st. University Embankment 1;
4 - Federal State Budgetary Educational Institution of Higher Education "Saint-Petersburg State Academy of Veterinary Medicine"
196084, Russia, Saint-Petersburg, st. Chernigovskaya, 5
Е-mail: [email protected]


Keywords: microcirculation visualization of blood vessels analysis of vessels

For citation:

Vasutina M., Pechnikova N., Toropova Ya. Methods of Visualization and Analysis of The Microcirculatory State in Veterinary and Experimental Practices. Laboratory Animals for Science. 2019; 2. https://doi.org/10.29296/2618723X-2019-02-07

Abstract

In veterinary medicine and experimental studies there are still questions about the quality of microcirculation and the condition of microcirculation vessels. Normal functioning of organs as such and of the organism as a whole is determined by the state of regulatory systems and individual links of the microcirculatory channel. Currently, the visualization of the microcirculation channel is carried out by invasive and non-invasive methods. However, preference is given to indirect methods of diagnosing the condition of vessels based on the analysis of metabolic processes in the body. This review provides information on the most common methods of visualization and diagnostics of microvascular channel condition in experimental and veterinary practices. Literature review was carried out with the help of the MEDLINE search system, starting from January 2008, the following keywords were used: microcirculation, visualization of blood vessels, analysis of vessels. The data obtained showed that in veterinary practice, non-invasive methods are usually used to evaluate the microvascular channel. The most accessible and informative methods are spectrophotometry, rheovasography, laser Doppler flowmetry (including ultrasonic biomicroscopy), as well as microwave radiothermometry, X-ray contrast honey, vasography, venography and lymphography. In addition, magnetic resonance angiography, pulse oximetry and computerized capillaroscopy are informative methods for vascular diagnostics. In turn, various optical techniques (luminescent, ultraviolet, interference, phase-contrast microscopes), optical quantum generators, achievements of electronics (electron and television microscopes), new types of sensors and amplifiers, have existing limitations in practical application (do not allow to analyze the functional aspect in the study of microcirculation links), as a result of which knowledge in this field is still observed mainly at the level of morphology of individual components. Intravital fluorescence digital microscopy becomes the most attractive method for practical purposes to assess the state of blood and lymphatic flow.

Full text available only in Russian

References

  1. Chernux A.M., Aleksandrov P.N., Alekseev O.V. Mikrocirkulyaciya. Monografiya. Pod obshhej red. A. M. Chernuxa. M.: Medicina. 1984; 432.
  2. Simas R., Ferreira S.G., Menegat L., Zanoni F.L., Correia Cr.J. and et. Mesenteric hypoperfusion and inflammation induced by brain death are not affected by inhibition of the autonomic storm in rats. Clinics (Sao Paulo). 2015; 70 (6): 446–52. doi: 10.6061/clinics/2015(06)11
  3. Wauters S., Somers J., De Vleeschauwer S., Verbeken E., Verleden G..M. et al. Evaluating lung injury at increasing time intervals in a murine brain death model. J. Surg. Res. 2013; 183 (1): 419–26.
  4. Andreeva I.V., Vinogradov A.A. Perspektivy` ispol`zovaniya sovremenny`x metodov vizualizacii v morfologicheskix i e`ksperimental`ny`x issledovaniyax. Nauka molody`x (Eruditio Juvenium). 2015; 4: 56–9.
  5. Karelin M.S. Magnitno-rezonansnaya tomografiya v veterinarnoj medicine. Veterinarny`j doktor. 2007; 4: 2–4.
  6. Hirche N. Real-time lymphography by indocyanine green fluorescence: improved navigation for regional lymph node staging. N. Hirche, H. Engel, Z. Hirche et al. Ann. Plast. Surg. 2014; 73 (6): 701–5. doi:10.1097/SAP.0b013e3182858831
  7. Unno N., Inuzuka K., Suzuki M. et al. Preliminary experience with a novel fluorescence lymphography using indocyanine green in patients with secondary lymphedema. J. Vasc. Surg. 2007; 45 (5): 1016–21. doi:10.1016/j.jvs.2007.01.023
  8. Zhu B. A review of performance of near-infrared fluorescence imaging devices used in clinical studies / B. Zhu, E.M. Sevick-Muraca. Br.J. Radio. 2015; l88 (1045): 20140547. doi:10.1259/bjr.20140547
  9. Lindken R. Micro-Particle Image Velocimetry (µPIV): Recent developments, applications, and guidelines / R. Lindken, M. Rossi, S. Große, J. Westerweel. Lab. Chip. 2009; 9: 2551–2567. doi:10.1039/B906558J
  10. Sugii Y. In vivo PIV measurement of red blood cell mesentery motion. Y. Sugii, S. Nishio, K. Okamoto. Physiol. Meas. 2002; 23: 403–16.
  11. Kazemzadeh A. The Effect of Contact Angles and Capillary Dimensions on the Burst Frequency of Super Hydrophilic and Hydrophilic Centrifugal Microfluidic Platforms, a CFD Study. Kazemzadeh A., Ganesan P., Ibrahim F. et al. PLoS One. 2013; 8 (9): e73002. doi:10.1371/journal.pone.0073002
  12. Shakeria M. Optical Imaging of Steady Flow in a Phantom Model of Iliac Artery Stenosis: Comparison of CFD Simulations with PIV Measurements. M. Shakeria, I. Khodarahmia, M. S. Keith, A. A. Aminia Proc. SPIE. 2010; 7626: 76260L-1.
  13. Gurevich M.I., Solov`ev A.I., Litovchenko L.P., Doloman L. B. Impedansnaya reopletizmografiya. Kiev: Naukova dumka, 2002; 176.
  14. Deryabin E.I., Dvinyaninova E.E., Vaganova N.V. Primenenie fotopletizmografii dlya issledovaniya lokal`nogo krovotoka chelyustno-licevoj oblasti. Lazernaya medicina. 2000; 3 (2): 18–26.
  15. Lebedev P.A., Kalakutskij L.I., Vlasova S.P., Gorlov A.P. Diagnostika funkcii sosudistogo e`ndoteliya u bol`ny`x s serdechno-sosudisty`mi zabolevaniyami: metodicheskie rekomendacii. Samara. 2004; 18.
  16. Krupatkina A.I. Lazernaya dopplerovskaya floumetriya mikrocirkulyacii krovi: rukovodstvo dlya vrachej. A.I. Krupatkina, V.V. Sidorova. M.: Medicina. 2005; 256.
  17. Kozlov V.I. Ocenka sostoyaniya gemomikrocirkulyacii v tkanyax s pomoshh`yu lazernoj dopplerovskoj floumetrii. V. I. Kozlov. M.. 2001; 24.
  18. Makolkin V.I., Bran`ko V.V., Bogdanova E`.A. Metod lazernoj dopplerovskoj floumetrii v kardiologii. Posobie dlya vrachej. M., 2001; 42.
  19. Kelly R.P. Determination of age-related increases in large artery stiffness by digital pulse contour analysis /R.P. Kelly, S.C. Millasseau, P.J. Chowienczyk. Clinical Science. 2002; 103: 371–7.
  20. Zufferey P., Depairon M., Chamot A. M., Monti M. Prognostic significance of nailfold capillary microscopy ir patients with Raynaud’s phenomenon and scleroderma-pattern abnormalities. Clinical Rheumatology. 2002; 11 (4): 536–41.
  21. Terexov I.V., Dzyuba M.A., Bondar` S.S. i dr. Ocenka al`veolyarno-kapillyarny`x narushenij pri razvitii tyazhelogo gemodinamicheskogo oteka legkix u kry`s i ix korrekciya s pomoshh`yu SVCh - izlucheniya. Saratovskij nauchno-medicinskij zhurnal. 2011; 7 (2): 389–92.
  22. Dennis R. Diagnosticheskaya vizualizaciya opuxolej. Onkologicheskie zabolevaniya melkix domashnix zhivotny`x. M.: Akvarium. 2002; 31–81.
  23. Xan K. M., Xerd Ch. D. Veterinarnaya rentgenografiya. M.: Akvarium. 2006; 296.
  24. Belov A.D. Opuxoli. Obshhaya veterinarnaya xirurgiya. M.: Agropromizdat. 1990; 592.
  25. Savel`ev V.S. Flebologiya. Rukovodstvo dlya vrachej. M.: Medicina, 2001; 664.
  26. Kozlov V.I., Mach F.B., Litvin O.A. Metod lazernoj dopplerovskoj floumetrii. Posobie dlya vrachej. Moskva. 2001; 48.
  27. Wessmann, A., Chandler, K., Garosi, L. Ischaemic and haemorrhaqic stroke in the dog. The Veterinary Journal, 2009; 180: 290–303. doi: 10.1016/j.tvjl.2007.12.023
  28. Rink P. A. Magnitny`j rezonans v medicine. Osnovnoj uchebnik Evropejskogo foruma po magnitnomu rezonansu: per. s angl. V.E. Sinicina, D.V. Ustyuzhanina. Pod.red. V.E. Sinicina. M.: GE`OTAR-MED, 2003; 256.
  29. Tkachuk V.A. Klinicheskaya bioximiya. M.: GE`OTAR MED, 2002; 306.
  30. Baskurt O.K. The effect of red blood cell aggregation on blood flow resistance. O.K. Baskurt, M. Bor-Kucukatay, O. Yalcin. Biorheology. 1999; 36 (5–6): 447-52.
  31. Bagaev S.N., Zaxarov V.N., Orlov V.A., Panov S.V., Fomin Yu. N. Issledovanie fizicheskix mexanizmov mikrocirkulyacii krovi i transkapillyarnogo obmena s ispol`zovaniem fazochuvstvitel`nogo metoda. Rossijskij zhurnal biomexaniki, 2006; 10 (3): 22–40.
  32. Bagayev S.N. The phenomenon of formation of an acoustic field in the lumens of microvessels of the blood circulation system. S.N. Bagaev, V.N. Zakharov, Yu.D. Obraztsov, S.V. Panov, Yu.N. Fomin. Technical digest. Moscow LAT. 2002; 147. doi:10.1117/12.518705
  33. Saba L., Berritto D., Iacobellis F., Scaglione M. and et. Acute arterial mesenteric ischemia and reperfusion: Macroscopic and MRI findings, preliminary report. World J Gastroenterol. 2013; 19 (40): 6825–33. doi: 10.3748/wjg.v19.i40.6825
  34. Morris C.E., Skalak T.C. Chronic static magnetic field exposure alters microvessel enlargement resulting from surgical intervention. Journal of Applied Physiology. 2007; 103 (2): 629–36. 10.1152/japplphysiol.01133.2006
  35. McIntyre C.A., Williams B.C., Lindsay R.M., McKight J.A. Preservation of vascular function in rat mesenteric resistance arteries following cold storage, studied by small vessel myography. P.W.F. British Journal of Pharmacology. 1998; 123: 1555–60. doi: 10.1038/sj.bjp.0701768

You may be interested