Diet-induced Models of Metabolic Disorders. Report 6: Experimental Anemia

DOI: 10.29296/2618723X-2019-02-04

M. Makarova, V. Makarov

Saint Petersburg Institute of Pharmacy
Russia 188663, Russia, Leningradskiy region, Vsevolozhskiy district, Kuzmolovskiy, st. Zavodskaya, 3. b. 245

Keywords: anemia diet-induced model

For citation:

Makarova M., Makarov V. Diet-induced Models of Metabolic Disorders. Report 6: Experimental Anemia. Laboratory Animals for Science. 2019; 2.


The widespread prevalence of anemia, mainly iron deficiency, among the world's population determines the need for constant search for means of prevention and treatment of this disease, which is impossible without adequate experimental models. For modeling anemia use mostly rats and mice (Wistar, Sprague-Dawley, C57BL/6 and others.), rarely Guinea pigs, primarily females and cubs. Semi-synthetic diets (AIN-93G, TD.80396 and others) with reduced iron content (5.2–7.8–8 mg / kg diet), the standard diet of control animals contains 35 mg/kg of iron for rats and mice, about 100 mg/kg diet – for Guinea pigs. The article presents the characteristics and composition of semi-synthetic diets for modeling iron deficiency anemia in laboratory animals, which is manifested by growth retardation, weight loss, tolerance to physical activity and cognitive activity, splenomegaly and cardiomegaly, weakening of immunity. The data on the main morphological (the number of red blood cells, reticulocytes, platelets and their indices) and biochemical (the concentration of hemoglobin of blood and red blood cells, serum iron, ferritin, transferrin, the activity of redox enzymes) blood parameters to assess the effectiveness of the studied drugs. The parameters of changes in the state of blood and metabolism given in the article give an idea of the direction of these changes in the development of experimental anemia. For example, a significant decrease in body weight, a drop in hemoglobin levels, a tendency to reduce the average hemoglobin content in erythrocytes, their average volume, as well as iron content in serum and liver, serum ferritin concentration, against the background of a sharp increase in the total iron binding capacity of blood serum, reducing the activity of superoxide dismutase and glutathione peroxidase. These disorders, indicating the development of microcytic, hypochromic iron deficiency anemia in animals, allow to evaluate their dynamics in the subsequent testing of the studied therapeutic agents.

Full text available only in Russian


  1. Vertkin A.L. Anemiya. Rukovodstvo dlya prakticheskix vrachej. M.: E`KSMO, 2014; 75.
  2. Management of Anemia. A Comprehensive Guide for Clinicians. Editors Robert Provenzano, Edgar V. Lerma, Lynda Szcech. Springer Science+Business Media LLC, New York, 2018; 243.
  3. Smolyanskij B.L., Liflyandskij V.G. Lechebnoe pitanie. Karmanny`j spravochnik. M.: OLMA Media Grupp, 2010: 394–419.
  4. Zhang X.G., Wei G.X., Wang W.N., Ma G.D., Tang P., Chen X.Q. Effects of Fe-YM1504 on iron deficiency anemia in rats. Food Funct. 2016 Jul 13; 7 (7): 3184–92. doi: 10.1039/c6fo00423g.
  5. Makarova M.N. Pitanie laboratorny`x zhivotny`x. Priznaki deficita i izby`tka mineral`ny`x soedinenij. Soobshhenie 3. M.N. Makarova, V.G. Makarov, A.V. Ry`bakova. Mezhdunarodny`j vestnik veterinarii. 2017; 4: 110–6.
  6. Minerals in Animal and Human Nutrition / Edited by L.R. McDowell, Elsevier Science B.V, Amsterdam, 2003: 644.
  7. Makarova M.N. Pitanie laboratorny`x zhivotny`x. Osnovny`e raciony`. Soobshhenie 1. M.N. Makarova, V.G. Makarov, A.V. Ry`bakova, O.K. Zozulya. Mezhdunarodny`j vestnik veterinarii. 2017; 2: 91–105.
  8. Huang G.C., Chen S.Y., Tsai P.W., Ganzon J.G., Lee C.J., Shiah H.S., Wang C.C. Effects of Dang-Gui-Bu-Xue-Tang, an herbal decoction, on iron uptake in iron-deficient anemia. Drug Design, Development and Therapy 2016:10 949–57. . doi: 10.2147/DDDT.S94309. eCollection 2016.
  9. Wang F.R., Xie Z.G., Ye X.Q., Deng S.G., Hu Y.Q., Guo X., Chen S.G. Effectiveness of treatment of iron deficiency anemia in rats with squidink melanin-Fe. Food Funct. 2014 Jan; 5 (1): 123–8. doi: 10.1039/c3fo60383k.
  10. Zhang Y., Zhao D., Xu J., Xu C., Dong C., Liu Q., Deng S., Zhao J., Zhang W., Chen X. Effects of dietary factors on the pharmacokinetics of 58Fe-labeled heminafter oral administration in normal rats and the iron-deficient rats. Biol. Trace Elem. Res., 2013 Jun; 153 (1-3): 243–50. doi: 10.1007/s12011-013-9654-3.
  11. Martínez-Zavala M., Mora-Avilés M.A., Anaya-Loyola M.A., Guzmán-Maldonado H., Aguilera-Barreyro A., Blanco-Labra A., García-Gasca T. Common Bean Leaves as a Source of Dietary Iron: Functional Test in an Iron-Deficient Rat Model. Plant Foods Hum. Nutr., 2016 Sep; 71 (3): 259–64. doi: 10.1007/s11130-016-0554-5.
  12. Yu F., Hao S., Zhao Y., Ren Y., Yang J., Sun X., Chen J.. Mild maternal iron deficiency anemia induces DPOAE suppression and cochlear hair cell apoptosis by caspase activation in young guinea pigs. Environ. Toxicol. Pharmacol., 2014 Jan; 37 (1): 291–9. doi: 10.1016/j.etap.2013.11.024.
  13. Xiao C., Lei X., Wang Q., Du Z., Jiang L., Chen S., Zhang M., Zhang H., Ren F. Effects of a Tripeptide Iron on Iron-Deficiency Anemia in Rats. Biol. Trace Elem. Res. 2016 Feb;169 (2): 211–7. doi: 10.1007/s12011-015-0412-6.
  14. Burns M., Amaya A., Bodi C., Ge Z., Bakthavatchalu V., Ennis K., Wang T.C., Georgieff M., Fox J.G. Helicobacter pylori infection and low dietary iron alter behavior, induce iron deficiency anemia, and modulate hippocampal gene expression in female C57BL/6 mice. PLoS One. 2017 Mar 29; 12 (3): e0173108. doi: 10.1371/journal.pone.0173108.
  15. Song S., Yang L., Ye M., Chen X., Shi F., Shaikh F. Antioxidant activity of a Lachnum YM226 melanin-iron complex and its influence on cytokine production in mice with iron deficiency anemia. Food Funct. 2016 Mar; 7 (3): 1508–14. doi: 10.1039/c5fo01274k.
  16. Staroń R., Van Swelm R.P., Lipiński P., Gajowiak A., Lenartowicz M., Bednarz A., Gajewska M., Pieszka M, Laarakkers C.M., Swinkels D.W, Starzyński R.R. Urinary Hepcidin Levels in Iron-Deficient and Iron-Supplemented PigletsCorrelate with Hepcidin Hepatic mRNA and Serum Levels and with Body Iron Status. PLoS One. 2015 Aug 31; 10 (8): e0136695. doi: 10.1371/journal.pone.0136695. eCollection 2015.
  17. Zaplatnikov A.L., Kuzneczova O.A., Vorob`eva A.S., Radchenko E.R., Svinciczkaya V.I., Gavelya N.V., Brazhnikova O.V., Ivaxnenko Yu.I. Algoritm verifikacii xaraktera anemii na osnove korrektnoj traktovki pokazatelej klinicheskogo analiza krovi. RMZh. 2017; 12: 908–12.
  18. Ingerlejb M.B. Medicinskie analizy`. Diagnosticheskij spravochnik. Seriya: Sovremennaya medicina. Polny`j spravochnik. M.: E`ksmo, 2012: 320.
  19. Xiggins K. Rasshifrovka klinicheskix laboratorny`x analizov [E`lektronny`j resurs]. K. Xiggins; per. s angl.; pod red. prof. V.L. E`manue`lya. 7-e izd. (e`l.). E`lektron. tekstovy`e dan. (1 fajl pdf : 592 s.). – M. : Laboratoriya znanij, 2016.
  20. Frýdlová J., Rogalsky D.W., Truksa J., Traeger L., Steinbicker A.U., Vokurka M., Krijt J. Liver HFE protein content is posttranscriptionally decreased in iron-deficient mice and rats. Am J Physiol Gastrointest Liver Physiol. 2018 Oct 1; 315 (4): G560-G568. doi: 10.1152/ajpgi.00070.2018.
  21. Rineau E., Gaillard T., Gueguen N., Procaccio V., Henrion D., Prunier F., Lasocki S. Iron deficiency without anemia is responsible for decreased left ventricular function and reduced mitochondrial complex I activity in a mouse model. Int J Cardiol. 2018 Sep 1; 266: 206–12. doi: 10.1016/j.ijcard.2018.02.021.

You may be interested