Determination of reference intervals of creatinine clearance in laboratory animals

Original article

УДК 616-092.9+612.461.17
DOI: 10.57034/2618723X-2022-04-03

M.V. Miroshnikov, PhD, Head of Laboratory Diagnostics Department, https://orcid.org/0000-0002-9828-3242
K.T. Sultanova, PhD, Head of the Department of Experimental Pharmacology and Toxicology, https://orcid.org/0000-0002-9846-8335
M.A. Kovaleva, PhD, Head of the scientific and methodological group, https://orcid.org/0000-0002-0740-9357
M.A. Akimova, Chief animal technician, https://orcid.org/0000-0001-8643-3613
M.N. Makarova, MD, Director, https://orcid.org/0000-0003-3176-6386

Research and manufacturing company “Home оf Pharmacy”,
188663, Russia, Leningrad oblast, Vsevolozhskiy district, Kuzmolovskiy t.s., Zavodskaya st. 3–245.

* E-mail: [email protected]


Keywords: renal function endogenous creatinine clearance reference intervals biochemical analysis of urine daily urine blood serum

Acknowledgements

The study was performed without external funding.


For citation:

Miroshnikov M.V., Sultanova K.T., Kovaleva M.A., Akimova M.A., Makarova M.N. Determination of reference intervals of creatinine clearance in laboratory animals. Laboratory Animals for Science. 2022; 4. https://doi.org/10.57034/2618723X-2022-04-03

Abstract

The assessment of renal function is an important part of monitoring the health of laboratory animals in preclinical studies. One of the most important indicators for the assessment of renal function is serum creatinine concentration and endogenous creatinine clearance. Creatinine is the breakdown product of creatine phosphate in muscle tissue, which is further filtered from the blood by the kidneys and excreted in the urine. Its level depends on the amount of muscle mass and the intensity of the animals metabolic processes. In general, an increase in creatinine levels in the blood reflects insufficient renal filtration ability, it is worth noting that creatinine concentration is not a specific marker of nephropathies, making its single use in the assessment of renal dysfunction incorrect. One of the indicators to monitor animal health as well as renal excretory dysfunction is endogenous creatinine clearance, which reflects the level of glomerular filtration. A review of the literature has shown that information on endogenous creatinine clearance in laboratory animals is insufficient and the data vary widely between animal species and between lines of the same animal species. A review of the literature has shown that information on endogenous creatinine clearance in laboratory animals is insufficient and the data vary widely between animal species and between lines of the same animal species. The aim of the study was to establish a base of reference intervals of creatinine clearance in laboratory animals — CD-1 mice, Mongolian gerbils, Syrian hamsters, Wistar rats, Agouti guinea pigs, ferrets, cats, Beagle dogs, minipigs, rabbits, Javanese macaques and marmoset. In the course of the work, a method of obtaining urine samples within 24 hours using metabolic cells was perfected. Urine collection in large animals was carried out using a hydrophobic bedding. Creatinine clearance was determined for all animals under the same conditions using common analytical methods. The endogenous creatinine clearance values of laboratory animals established in this work may be useful in the evaluation of nephrotoxicity within the framework of pharmacological safety, in the study of the pharmacological potential of new nephrotherapeutic agents, and in the monitoring of animal health.

Conflict of interest

The authors declare no conflicts of interest.

Authors contribution

M.V. Miroshnikov — analysis of scientific literature and guidelines, writing, editing and revision of the text, carrying responsibility for all aspects of the study related to the reliability of the data.
K.T. Sultanova — writing and editing of the text, summarising the study results, preparation of the tables.
M.A. Kovaleva — аnalysis of scientific literature and guidelines, revision of the text.
M.A. Akimova — manipulations with laboratory animals, obtaining data.
M.N. Makarova — idea, editing of the text.

References

  1. Watson A.D.J., Lefebvre H.P., Concordet D. et al. Plasma exogenous creatinine clearance test in dogs: comparison with other methods and proposed limited sampling strategy // Journal of Veterinary Internal Medicine. 2002. Vol. 16. N. 1. P. 22–33. DOI: 10.1892/0891-6640(2002)016<0022:peccti>2.3.co;2.
  2. Obert L.A., Elmore S.A., Ennulat D. et al. A Review of Specific Biomarkers of Chronic Renal Injury and Their Potential Application in Nonclinical Safety Assessment Studies // Toxicologic pathology. 2021. Vol. 49. N. 5. Р. 996–1023. DOI: 10.1177/0192623320985045.
  3. Schwartz G.J., Furth S.L. Glomerular filtration rate measurement and estimation in chronic kidney disease // Pediatric nephrology. 2007. Vol. 22. N. 11. P. 1839–1848. DOI: 10.1007/s00467‑006‑0358‑1.
  4. Von Hendy-Willson V.E., Pressler B.M. An overview of glomerular filtration rate testing in dogs and cats // The Veterinary Journal. 2011. Vol. 188. N. 2. P. 156–165. DOI: 10.1016/j.tvjl.2010.05.006.
  5. Stonard MD. Assessment of renal function and damage in animal species. A review of the current approach of the academic, governmental and industrial institutions represented by the Animal Clinical Chemistry Association // Journal of Applied Toxicology. 1990. Vol. 10. N. 4. P. 267–274. DOI: 10.1002/jat.2550100407.
  6. Gounden V., Bhatt H., Jialal I. Renal function tests. 2018.
  7. Peake M., Whiting M. Measurement of serum creatinine — current status and future goals // Clinical biochemist reviews. 2006. Vol. 27. N. 4. P. 173.
  8. Sandilands E.A., Dhaun N., Dear J.W. et al. Measurement of renal function in patients with chronic kidney disease // British journal of clinical pharmacology. 2013. Vol. 76. N. 4. P. 504–515. DOI: 10.1111/bcp.1219.
  9. Заалишвили Т.В. Функционально-морфологический анализ экспериментальной модели амилоидоза почек у мышей // Влияние монотерапии милдронатом. Автореф. дисс. канд. Владикавказ. 2005. [Zaalishvili T.V. Funkcional’no-morfologicheskij analiz eksperimental’noj modeli amiloidoza pochek u myshej // Vliyanie monoterapii mildronatom. Avtoref. diss. kand. Vladikavkaz. 2005. (In Russ.)].
  10. Takahashi N., Boysen G., Li F.Y.L.I. et al. Tandem mass spectrometry measurements of creatinine in mouse plasma and urine for determining glomerular filtration rate // Kidney international. 2007. Vol. 71. N. 3. P. 266–271. DOI: 10.1038/sj.ki.5002033.
  11. Байрашева В.К., Бабенко А.Ю., Дмитриев Ю.В. и др. Новая модель сахарного диабета 2‑ого типа и диабетической нефропатии у крыс // Трансляционная медицина. 2016. Т. 3 № 4. С. 44–55. [Bajrasheva V.K., Babenko A.YU., Dmitriev YU. V. i dr. Novaya model’ saharnogo diabeta 2‑ogo tipa i diabeticheskoj nefropatii u krys // Translyacionnaya medicina. 2016. Vol. 3. N. 4. P. 44–55. (In Russ.)].
  12. Гоженко А.И., Карчаускас В.Ю., Доломатов С.И. Влияние водной и гиперосмотической нагрузок на клиренс креатинина при экспериментальной нефропатии, вызванной хлоридом ртути // Нефрология. 2002. Т. 6. № 3. С. 72–74. [Gozhenko A.I., Karchauskas V.YU. Dolomatov S.I. Vliyanie vodnoj i giperosmoticheskoj nagruzok na klirens kreatinina pri eksperimental’noj nefropatii, vyzvannoj hloridom rtuti // Nefrologiya. 2002. Vol. 6. N. 3. P. 72–74. (In Russ.)].
  13. Cockcroft D.W., Gault H. Prediction of creatinine clearance from serum creatinine // Nephron. 1976. Vol. 16. N. 1. P. 31–41.
  14. Tukey J.W. et al. Exploratory data analysis. 1977. Vol. 2. P. 131–160.
  15. Colby L.A., Nowland M.H., Kennedy L.H. Clinical laboratory animal medicine: an introduction. 2019. 512 p.
  16. Fox J.G. Laboratory animal medicine. Elsevier. 2015.
  17. Kurtz D.M., Travlos G.S. (ed.). The clinical chemistry of laboratory animals. CRC Press. 2017.
  18. Крышень К.Л., Кательникова А.Е., Макарова М.Н. и др. Особенности экспериментальной работы с хорьками // Лабораторные животные для научных исследований. 2019. № 2. С. 10. [Kryshen’ K.L., Katel’nikova A.E., Makarova M.N. i dr. Osobennosti eksperimental’noj raboty s hor’kami // Laboratornye zhivotnye dlya nauchnyh issledovanij. 2019. N. 2. P. 10. (In Russ.)].
  19. Swindle M.M. Swine in the laboratory: surgery, anesthesia, imaging, and experimental techniques. CRC press. 2007.
  20. Nasir O., Artunc F., Saeed A. et al. Effects of gum ara­bic (Acacia senegal) on water and electrolyte balan­ce in healthy mice // Journal of Renal Nutrition. 2008. Vol. 18. N. 2. P. 230–238. DOI: 10.1053/j.jrn.2007.08.004.
  21. Qi Z., Whitt I., Mehta A. et al. Serial determination of glomerular filtration rate in conscious mice using FITC-inulin clearance // American Journal of Physio­logy-Renal Physiology. 2003. Vol. 286. N. 3. P. F590–F596. DOI: 10.1152/ajprenal.00324.2003.
  22. Nouri Z., Zhang X.Y., Wang D.H. The physiological and molecular mechanisms to maintain water and salt homeostasis in response to high salt intake in Mongolian gerbils (Meriones unguiculatus) // Journal of Compa­rative Physiology B. 2020. Vol. 190. N. 5. P. 641–654. DOI: 10.1007/s00360‑020‑01287‑0.
  23. Shibasaki T., Xu Q.Y., Ohno I. et al. Effect of triethy­lenepentaminehexaacetic acid on the renal damage in cadmium-treated Syrian hamsters // Biological trace element research. 1995. Vol. 50. N. 2. P. 157–165. DOI: 10.1007/BF02789418.
  24. He L., Hao L., Fu X. et al. Severe hypertriglyceridemia and hypercholesterolemia accelerating renal injury: a novel model of type 1 diabetic hamsters induced by short-term high-fat/high-cholesterol diet and low-dose streptozotocin // BMC nephrology. 2015. Vol. 16. N. 1. P. 1–12. DOI: 10.1186/s12882‑015‑0041‑5.
  25. Гоженко А.И., Доломатов С.И., Лобанов А.К. и др. Влияние рифампицина на функциональное состояние почек белых крыс // Нефрология. 2005. Т. 9. № 2. С. 101–103. [Gozhenko A.I., Dolomatov S.I., Lobanov A.K. i dr. Vliyanie rifampicina na funkcional’noe sostoyanie pochek belyh krys // Nefrologiya. 2005. Vol. 9. N. 2. P. 101–103. (In Russ.)]. DOI: 10.24884/1561‑6274‑2005‑9‑2‑101‑103.
  26. Гоженко А.И., Доломатов С.И., Доломатова Е.А. Реакция почек белых крыс на введение малых доз нитрита натрия // Нефрология. 2004. Т. 8. № 2. С. 86–89. [Gozhenko A.I., Dolomatov S.I., Dolomatova E.A. Reakciya pochek belyh krys na vvedenie malyh doz nitrita natriya // Nefrologiya. 2004. Vol. 8. N. 2. P. 86–89. (In Russ.)]. DOI: 10.24884/1561‑6274‑2004‑8‑2‑86‑89.
  27. Van Liew J.B., Zamlauski-Tucker M.J., Feld L.G. Endogenous creatinine clearance in the rat: strain variation // Life sciences. 1993. Vol. 53. N. 12. P. 1015–1021. DOI: 10.1016/0024-3205(93)90124‑l.
  28. Байрашева В.К., Бабенко А.Ю., Дмитриев Ю.В. и др. Новая модель сахарного диабета 2‑ого типа и диабетической нефропатии у крыс // Трансляционная медицина. 2016. Т. 3 № 4. С. 44–55. [Bajrasheva V.K., Babenko A.Yu., Dmitriev Yu.V. et al. Novaya model’ saharnogo diabeta 2‑ogo tipa i diabeticheskoj nefropatii u krys // Translyacionnaya medicina. 2016. Vol. 3. N. 4. P. 44–55. (In Russ.)]. DOI: 10.18705/2311‑4495‑2016‑3‑4‑44‑55.
  29. Daily III J.W., Sachan D.S. Choline supplementation alters carnitine homeostasis in humans and guinea pigs // The Journal of nutrition. 1995. Vol. 125. N. 7. P. 1938–1944. DOI: 10.1093/jn/125.7.1938.
  30. Morris E.R., O’dell B.L. Effect of magnesium deficiency in guinea pigs on kidney function and plasma ultrafiltrable ions // Proceedings of the Society for Experimental Biology and Medicine. 1969. Vol. 132. N. 1. P. 105–110. DOI: 10.3181/00379727‑132‑34159.
  31. Oyen I., Boylan J.W. Renal Clearance in the Unanesthetized Guinea Pig: Depression of Inulin Clearance by Creatinine // Proceedings of the Society for Experi­mental Biology and Medicine. 1962. Vol. 111. N. 2. P. 253–257.
  32. Esteves M.I., Marini R.P., Ryden E.B. et al. Estimation of glomerular filtration rate and evaluation of renal function in ferrets (Mustela putorius furo) // American journal of veterinary research. 1994. Vol. 55. N. 1. P. 166–172.
  33. Morrisey J.K., Johnston M.S. Ferrets // Exotic animal formulary. 2018. P. 532.
  34. Ермакова Т.А. Оценка скорости клубочковой фильтрации методом исследования клиренса эндогенного креатинина //Ветеринария Кубани. 2008. № 5. С. 29–30. [Ermakova T.A. Ocenka skorosti klubochkovoj fil’tracii metodom issledovaniya klirensa endo­gennogo kreatinina // Veterinariya Kubani. 2008. N. 5. P. 29–30. (In Russ.)].
  35. Braun J.P., Lefebvre H.P., Watson A.D.J. Creatinine in the dog: a review // Veterinary Clinical Pathology. 2003. Vol. 32. N. 4. P. 162–179. DOI: 10.1111/j.1939-165x.2003.tb00332.x.
  36. Sleeman P., Patel N.N., Lin H. et al. High fat feeding promotes obesity and renal inflammation and protects against post cardiopulmonary bypass acute kidney injury in swine // Critical Care. 2013. Vol. 17. N. 5. P. 1–15. DOI: 10.1186/cc13092.
  37. Ullah N., Khan M.A., Khan T. et al. Protective effect of Cinnamomum tamala extract on gentamicin-induced nephrotic damage in rabbits // Tropical Journal of Pharmaceutical Research. 2013. Vol. 12. N. 2. P. 215–219. DOI: 10.4314/tjpr.v12i2.13.
  38. Hoefer H.L. Rabbit and ferret renal disease diagnosis // Laboratory medicine: avian and exotic pets. 2000. Р. 311–318.
  39. Gilmore J.P., Peterson T.V., Zucker I.H. Neither dorsal root nor baroreceptor afferents are necessary for elici­ting the renal responses to acute intravascular volume expansion in the primate Macaca fascicularis // Circulation Research. 1979. Vol. 45. N. 1. P. 95–99. DOI: 10.1161/01.res.45.1.95.
  40. Weekley L.B., Deldar A., Tapp E. Development of renal function tests for measurement of urine concentrating ability, urine acidification, and glomerular filtration rate in female cynomolgus monkeys // Journal of the Ameri­can Association for Laboratory Animal Science. 2003. Vol. 42. N. 3. P. 22–25.
  41. Gilmore J.P., Peterson T.V., Zucker I.H. Neither dorsal root nor baroreceptor afferents are necessary for elici­ting the renal responses to acute intravascular volume expansion in the primate Macaca fascicularis // Circulation Research. 1979. Vol. 45. N. 1. P. 95–99. DOI: 10.1161/01.res.45.1.95.
  42. Cornish K.G., Gilmore J.P. Increased left atrial pressure does not alter renal function in the conscious primate // American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 1982. Vol. 243. N. 1. P. R119–R124.
  43. Смирнов А.В., Румянцев А.Ш. Острое повреждение почек. Часть I (ПРОЕКТ, 2019 г.) // Нефрология. 2020. Т. 24. № 1. С. 67–95. [Smirnov A.V., Rumyancev A.SH. Ostroe povrezhdenie pochek. CHast’ I (PROEKT, 2019 g.) // Nefrologiya. 2020. Vol. 24. N. 1. P. 67–95. (In Russ.)].

Received: 2022-08-25
Reviewed: 2022-10-13
Accepted for publication: 2022-10-27

You may be interested