Overview of pre-clinical models of sepsis and septic shock

DOI: 10.29296/2618723X-2021-04-03

L.R. Nikiforova, microbiologist, ORCID 0000-0001-8710-2023

K.L. Kryshen, PhD, Head of Toxicology and Microbiology Department, ORCID 0000-0003-1451-7716

K.Е. Borovkova, head of microbiological laboratory, ORCID 0000-0003-1571-6549

J.V. Salmova, microbiologist, ORCID 0000-0001-9891-8634

 

Institute of Pre-Clinical Research Ltd.
188663, Russia, Leningrad Region, Kuzmolovsky, Zavodskaya St.3, Build. 245
Е-mail: [email protected]


Keywords: sepsis COVID-19 SARS-CoV-2 laboratory animals preclinical study

For citation:

Nikiforova L.R., Kryshen K.L., Borovkova К.Е., Salmova J.V. Overview of pre-clinical models of sepsis and septic shock. Laboratory Animals for Science. 2021; 4. https://doi.org/10.29296/2618723X-2021-04-03

Abstract

Sepsis is a life-threatening pathological condition of the body that occurs as a result of a systemic inflammatory response to infection. The development of sepsis can occur as a result of various bacterial, fungal and viral infections, such as COVID-19 or the flu. Over the past two years, the amount of deaths in the world from sepsis and septic shock has skyrocketed due to the spread of COVID-19. Due to the rapid increase in mortality from sepsis and septic shock, there is an urgent need to find new and improved therapies more than ever. An integral part of the development and testing of new drugs are preclinical studies using animal models. In this review, we reviewed and summarized research materials in the field of preclinical models of sepsis, the main pathogens and methods of pathology induction. According to the data presented in scientific articles, sepsis is most often modeled in mice, rats, rabbits, dogs, pigs, sheep and primates. Among animal models of sepsis, mice and rats are often used because of their small size, ease of experimentation, availability of genetically modified species, and relatively low cost. Large animals are considered the most suitable and accurate objects for modeling sepsis; these models not only allow serial sampling, but also have immunological and physiological functions very similar to humans. Non-human primate models mimic human sepsis more accurately than any other animal species, due to anatomical, molecular and physiological similarities. Despite all the advantages, the use of primates in sepsis research carries certain limitations, such as the risk of transmission of infectious diseases, high maintenance costs and ethical considerations. Almost all currently used sepsis models involve the initial administration of infectious agents, or their components, which subsequently trigger an inflammatory cascade of reactions. The choice of animals, the method of induction and the parameters to be evaluated depend on the objectives of the study.

Full text avaliable in Russain only 

Authors contribution 

L.R. Nikiforova – literary data collection, data collection and analysis, swriting and editing of the text

K.L. Kryshen – study concept and design, editing of the text, supervised the project, approved the final version of the manuscript

K.E. Borovkova – formalization of the article

J.V. Salmova – formalization of the article

Conflict of interest

The authors declare no conflict of interest requiring disclosure in this article.

References

  1. Wegrzyn G., Walborn A., Rondina M., Fareed J., Hoppensteadt D. Biomarkers of Platelet Activation and Their Prognostic Value in Patients With Sepsis-Associated Disseminated Intravascular Coagulopathy // Clinical and Applied Thrombosis/Hemostasis. – 2021. – Vol. 27. doi: 10.1177/1076029620943300.
  2. Navjot P., Yogesh S., Gigliotti J., Bajwa S. Mouse Models of Acute Kidney Injury // Animal Models in Medicine and Biology. – 2021. – Vol. 7. – P. 214-231.
  3. Chang J.C. Sepsis and septic shock: endothelial molecular pathogenesis associated with vascular microthrombotic disease // Thromb J. – 2019. – Vol. 17. – P. 198-14
  4. Chang J. C. TTP-like syndrome: novel concept and molecular pathogenesis of endotheliopathy-associated vascular microthrombotic disease // Thromb J. – 2018. – Vol. 16. – P. 1–9.
  5. Dempfle C.E. Coagulopathy of sepsis // Thromb Haemost. – 2004. – Vol. 91. – P. 213–24.
  6. Gauer R. Early recognition and management of sepsis in adults: the first six hours // Am Fam Physician. – 2013. – Vol. 88. – P.44–53.
  7. Cox M., Loman N., Bogaert D., O’Grady J. Co-infections: potentially lethal and unexplored in COVID-19 // Lancet. – 2020. – Vol. 11 (1). – P. 266-279.
  8. Riedemann N.C., Guo R.F., Ward P.A. The enigma of sepsis // J Clin Invest. – 2003. – Vol. 112. – P. 460–467.
  9. Cavaillon J.M., Adib-Conquy M., Fitting C., Adrie C., Payen D. Cytokine cascade in sepsis // Scand J Infect Dis. – 2003. – Vol. 35. – P. 535–544.
  10. Lin K.J., Lin J., Hanasawa K., Tani T., Kodama M. Interleukin-8 as a predictor of the severity of bacteremia and infectious disease // Shock. – 2000. – Vol. 14. – P. 95–100.
  11. Coelho A.L., Hogaboam C.M., Kunkel S.L. Chemokines provide the sustained inflammatory bridge between innate and acquired immunity // Cytokine Growth Factor Rev. – 2005. – Vol. 16. – P. 553–560.
  12. Horn K.D. Evolving strategies in the treatment of sepsis and systemic inflammatory response syndrome (SIRS) // Qjm. – 1998. – Vol. 9 (1). – P. 265–277.
  13. Riedemann N.C., Guo R.F., Ward P.A. Novel strategies for the treatment of sepsis // Nat Med. – 2003. – Vol. 9. – P. 517–524.
  14. Cohen J. Adjunctive therapy in sepsis: a critical analysis of the clinical trial programme // Br Med Bull. – 1999. – Vol. 55. – P. 212–225.
  15. Reinhart K., Karzai W. Anti-tumor necrosis factor therapy in sepsis: update on clinical trials and lessons learned // Crit Care Med. – 2001. – Vol. 29. – P. 121–125.
  16. Bernard G.R., Vincent J.L., Laterre P.F., LaRosa S.P., Dhainaut J.F., Lopez-Rodriguez A., Steingrub J.S., Garber G.E., Helterbrand J.D., Ely E.W. Efficacy and safety of recombinant human activated protein C for severe sepsis // N Engl J Med – 2001. – Vol. 34(4). – P. 699–709.
  17. Vincent J.L. Update on surgical sepsis syndrome // B. J. Surg. – 2014. – Vol. 104. – P.34-40. doi:10.1002/bjs.10451.
  18. Rudd K.E., Johnson S.C., Agesa K.M., Shackelford K.A., Tsoi D., Kievlan D.R. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study // Lancet. – 2020. – Vol. 39(5). – P. 200–211. doi: 10.1016/ S0140-6736(19)32989-7.
  19. Deitch E.A. Rodent models of intra-abdominal infection // Shock. – 2005. – Vol. 24. – P. 19-23. doi:10.1097/01.shk.0000191386.18818.0a.
  20. Gauer R.L. Early recognition and management of sepsis in adults: the first six hours // Physician. – 2013. – Vol. 88 (1). – P. 44–53.
  21. Szakmany T., Hauser B. N-acetylcysteine for sepsis and systemic inflammatory response in adults // The Cochrane. – 2012. – Vol. 9 (9). – P. 616. doi:10.1002/14651858.
  22. Munford R.S., Suffredini A.F. Sepsis, Severe Sepsis and Septic Shocks. Principles and Practice of Infectious Diseases // Philadelphia: Elsevier Health Sciences. – 2014. – Vol. 8. – P. 914–34.
  23. Polat G., Ugan R.A. Sepsis and septic shock: Current treatment strategies and new approaches // The Eurasian Journal of Medicine. – 2017. – Vol. 49(1). – P. 53–8. doi:10.5152/2017.17062
  24. Bloch K.C. Infectious Diseases // Pathophysiology of Disease. – 2018. – Vol. 6. – P. 63-78.
  25. Ramachandran G. Gram-positive and gram-negative bacterial toxins in sepsis: A brief review // Virulence. – 2014. – Vol. 5(1). – P. 216-235.
  26. Romagnoli S., Peris A., De Gaudio A.R. SARS-CoV-2 and COVID-19: from the bench to the bedside // Physiol Rev. – 2020. – Vol. 100(4). – P. 1455–1466.
  27. Vincent J.L., Jones G., David S., Olariu E., Cadwell K.K. Frequency and mortality of septic shock in Europe and North America: a systematic review and meta-analysis // Crit. Care. – 2019. – Vol. 23(1). – P. 196.
  28. Singer M., Deutschman C.S., Seymour C., Shankar-Hari M., Annane D., Bauer M. The third international consensus definitions for sepsis and septic shock (sepsis-3) // Jama. – 2016. – Vol. 315. – P. 801–10.
  29. Fei Z., Ting Y., Ronghui D., Guohui F., Ying L., Zhibo L., Xiang J., Wang Y., Song B., Gu X., Guan L., Wei Y., Li H., Wu X., Xu J., Tu S., Zhang Y., Chen H., Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study // The Lancet. – 2020. – Vol. 395. – P. 1054-1062.
  30. Wenrui J., Wang J., Sun B., Zhou J., Shi Y., Zhou Z. The Mechanisms and Animal Models of SARS-CoV-2 Infection.Frontiers in Cell and Developmental Biology // Nat Med. – 2021. – Vol. 9. – P. 1129. Doi:10.3389/fcell.2021.578825.
  31. Xu J., Zhang X., Pelayo R., Monestier M., Ammollo C.T., Semeraro F. Extracellular histones are major mediators of death in sepsis // Nat Med. – 2009. – Vol. 13(1). – P. 1321.
  32. Brandenburg K., Schromm A.B, Weindl G., Heinbockel F., Correa W., Mauss K., Martinez de Tejada G., Garidel P. An update on endotoxin neutralization strategies in Gram-negative bacterial infections // Expert Review of Anti-infective Therapy. – 2020. – P. 1-23.
  33. Patrícia R.S., Rodrigues, Picco N., Morgan P., Ghazal P. Sepsis target validation for repurposing and combining complement and immune checkpoint inhibition therapeutics // Expert Opinion on Drug Discovery. – Vol. 23(4). – P. 554-67.
  34. Tchessalova D., Tronson N. Memory deficits in males and females long after subchronic immune challenge // Neurobiology of Learning and Memory. – 2019. – Vol. 10. – P. 320-335.
  35. Swathi M.R., Pawan K., Nichita Y., Karthik R., Sandhya, Sandeepta B. Haptoglobin Improves Acute Phase Response and Endotoxin Tolerance in Response to Bacterial ЛПС // Immunology Letters. – 2019. – Vol. 10. – P. 1016.
  36. Krivan S., Kapelouzou A., Vagios S. Increased expression of Toll-like receptors 2, 3, 4 and 7 mRNA in the kidney and intestine of a septic mouse model // Sci Rep. – 2019. – Vol. 9. – P. 4010. doi:41598-019-40537-2
  37. Zantl N., Uebe A., Neumann B., Wagner H., Siewert J. R., Holzmann B., Heidecke C.D., Pfeffer K. Essential role of interferon insurvival of colon ascendens stent peritonitis, a novel murine model ofabdominal sepsis // Infect. Immun. – 1998. – Vol. 66. – P. 2300 –2309.
  38. Neumann B., Zantl N., Veihelmann A., Emmanuilidis K., Pfeffer K., Heidecke C.D., Holzmann B. Mechanisms of acute inflammatorylung injury induced by abdominal sepsis // Int. Immunol. – 1999. – Vol. 11. – P. 217–227.
  39. Maier S., Emmanuilidis K., Entleutner M., Zantl N., Werner M., Pfeffer K., Heidecke C.D. Massive chemokine transcription inacute renal failure due to polymicrobial sepsis // Shock. – 2000. – Vol. 14. – P. 187–192.
  40. Barthlen W., Zantl N., Pfeffer K., Heidecke C.D., Holzmann B., Stadler J. Impact of experimental peritonitis on bone marrow cellfunction // Surgery. – 1999. – Vol. 12(6). – P. 41– 47.
  41. Maier S., Emmanuilidis K., Entleutner M., Zantl N., Werner M., Pfeffer K., Heidecke C. D. Massive chemokine transcription inacute renal failure due to polymicrobial sepsis // Shock. – 2000. – Vol. 14. – P. 187–192.
  42. Hubbard W.J., Choudhry M., Schwacha M.G., Kerby J.D., Rue III L.W., Bland K.I., Chaudry I.H. Cecal ligation and puncture // Shock – 2005. – Vol. 24(1). – P. 52–57.
  43. Ayala A., Chaudry I. H. Immune dysfunction in murine polymi-crobial sepsis: mediators, macrophages, lymphocytes and apoptosis // Shock. – 1996. – P. 27–38.
  44. Song M., Kellum J. A. Interleukin-6 // Crit. Care Med. – 2005. – Vol. 33. – P. 463-465.
  45. Browne M.K., Leslie G.B. Animal models of peritonitis // Surg. Gynecol. Obstet. – 1976. – Vol. 14(3). – P. 738 –740.
  46. Weinstein W.M., Onderdonk A.B., Bartlett J.G., Gorbach S.L. Experimental intra-abdominal abscesses in rats: development of an experimental model // Infection and Immunity. – 1974. – Vol. 10(6). – P. 1250–1255.
  47. Volk H.W., Schneider J., Dämmrich J., Döll W., Hörl M., Bruch H.P. Animal model for chronic-abscess-forming peritonitis: histology and microbiology // European Surgical Research. – 1990. – Vol. 22(6). – P. 347–355. doi: 10.1159/000129121.
  48. Hansson L., Alwmark A., Christensen P., Jeppsson B., Holst E., Bengmark S. Standardized intraabdominal abscess formation with generalized sepsis: pathophysiology in the rat // European Surgical Research. – 1985. – Vol. 17(3). – P. 155–159. doi: 10.1159/000128461.
  49. Hau T., Simmons R.L. Animal models of peritonitis // Surg Gynecol Obstet. – 1977. – Vol. 144(5). – P. 755-6.
  50. Onderdonk A.B., Bartlett J.G., Louie T., Sullivan-Seigler N., Gorbach S.L. Microbial synergy in experimental intra-abdominal abscess // Infect Immun. – 1976. – Vol. 13(1). – P.22-6.
  51. Groeneveld A.B., Bronsveld W., Thijs, L.G. Hemodynamic determinants of mortality in human septic shock // Surgery. – 1986. – Vol. 99. – P. 140–153.
  52. Parker M. M., Shelhamer J. H., Natanson C., Alling D.W., Parrillo J.E. Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: heart rate as an early predictor of prognosis // Critical care medicine. – 1987. – Vol. 15. – P. 923–929.
  53. Angus D.C., van der Poll T. Severe sepsis and septic shock // The New England journal of medicine. – 2013. – Vol. 369. – P. 840–851.
  54. Wichterman K.A., Baue A.E., Chaudry I.H. Sepsis and septic shock--a review of laboratory models and a proposal // J Surg Res. – 1980. – Vol. 29. – P. 189–201.
  55. Buras J.A., Holzmann B., Sitkovsky M. Animal models of sepsis: setting the stage // Nat. Rev. Drug Discov. – 2005. – Vol. 4. – P. 854–865.
  56. Fink M.P. Animal models of sepsis // Virulence. – 2014. – Vol. 5. – P. 143–153.
  57. Zanotti-Cavazzoni S. L., Goldfarb, R. D. Animal models of sepsis // Critical care clinics. – 2009. – Vol. 25. – P. 703–719.
  58. Poli-de-Figueiredo L.F., Garrido A.G., Nakagawa N., Sannomiya P. Experimental models of sepsis and their clinical relevance // Shock. – 2008. – Vol. 30(1). – P. 53–59.
  59. Крышень К.Л., Кательникова А.Е., Росина Е., Акулова Е.Г., Макарова М.Н., Лютов А.Г., Макаров В.Г. Экспериментальная оценка эффективности препарата Габриглобин-IgM (обогащенный иммуноглобулинами класса M) на модели ЛПС-индуцированного септического шока у мышей // Биофармацевтический журнал. – 2016. – Т. 8(6). – С. 50-55. [Kryshen' K.L., Katel'nikova A.E., Rosina E., Akulova E.G., Makarova M.N., Lyutov A.G., Makarov V.G. Eksperimental'naya ocenka effektivnosti preparata Gabriglobin-IgM (obogashchennyj immunoglobulinami klassa M) na modeli ЛПС-inducirovannogo septicheskogo shoka u myshej // Biofarmacevticheskij zhurnal. – 2016. – Vol. 8(6). – P. 50-55(In Russ).].
  60. Michie H.R. The value of animal models in the development of new drugs for the treatment of the sepsis syndrome // Journal of Antimicrobial Chemotherapy. – 1998. – P. 1479.
  61. Guckian J.C., Morrey B.F., Kirby H.B. Role of Lysosomes and Cathepsin Inhibitor in Plasma during Pneumococcal Infection // The Journal of Infectious Diseases. – 1970. – Vol. 2. – P. 290.
  62. Matute-Bello G., Frevert C., Kajikawa O., Skerrett S., Goodman R., Park D. Septic shock and acute lung injury in rabbits with peritonitis // American Journal of Respiratory and Critical Care Medicine. – 2001 – Vol. 23(4). – P. 43.
  63. Guckian J.C. Coagulopathy in Experimental sepsis with Streptococcus pneumoniae in rabbits: effect of drug therapy and splenectomy // Journal of Infectious Diseases. – 1976. – P. 150.
  64. Natanson C., Fink M.P., Ballantyne H.K., MacVittie T.J., Conklin J.J., Parrillo J.E. Gram-negative bacteremia produces both severe systolic and diastolic cardiac dysfunction in a canine model that simulates human septic shock // J Clin Invest. – 1986. – P. 259.
  65. Nagy S., Tárnoky K. Canine model of hyperdynamic sepsis induced by intestinal ischemia // Acta Physiol Hung. – 1990. – Vol.75. – P. 303-20.
  66. Song R., Kim J., Yu D., Park C., Park J. Kinetics of IL-6 and TNF- changes in a canine model of sepsis induced by endotoxin // Veterinary Immunology and Immunopathology. – 2012. – Vol.14(6). – P.143-9.
  67. Maier S., Traeger T., Entleutner M., Westerholt A., Kleist B., Huser N. Cecal ligation and puncture versus colon ascendens stent peritonitis: two distinct animal models for polymicrobial sepsis//Shock. – 2004. – P. 505-11.
  68. Spapen H., Zhang H., Wisse E., Baekeland M., Seynaeve C., Eddouks M. The aminosteroid enhances hepatic blood flow preserves sinusoidal endothelial cell function structurein endotoxin-shocked dogs // Journal of Surgical Research. – 1999. – P.183-91.
  69. Cohen R., Hassell A., Marzouk K., Marini C., Liush S., Scharf S. Renal Effects of Nitric Oxide in Endotoxemia // American Journal of Respiratory and Critical Care Medicine. – 2001. – Vol.5. – P.1890.
  70. Azevedo L.C., Park M., Noritomi D.T., Maciel A.T., Brunialti M.K., Salomuo R. Characterization of an animal model of severe sepsis associated with respiratory dysfunction // Clinics. – 2007. – Vol.8 – P.491.
  71. JiM H., Yang J.J., Wu J., Li R.Q., Li G.M., Fan Y.X. Experimental sepsis in pigs- effects of vasopressin on renal, hepatic, and intestinal dysfunction // Ups J Med Sci. – 2012. – Vol.25(7). – P.63.
  72. Greif W.M., Forse R.A. Interventions to improve cardiopulmonary hemodynamics during laparoscopy in a porcine sepsis model // Journal of the American College of Surgeons. – 1999. – P.450.
  73. Kato T., Hussein M.H., Sugiura T., Suzuki S., Fukuda S., Tanaka T.Development and Characterization of A Novel Porcine Model of Neonatal Sepsis // Shock. – 2004. – Vol.32(9). – P.35.
  74. Ertmer C., Kampmeier T.G., Rehberg S., Morelli A. K., Âhler G., Lange M.Effects of balanced crystalloid vs. 0.9% saline-based vs. balanced 6% tetrastarch infusion on renal function and tubular integrity in ovine endotoxemic shock // Critical Care Medicine. – 2011. – Vol.78(3). – P.792.
  75. Shirani K.Z., Pruitt B., Mason A.D.The Influence of Inhalation Injury and Pneumonia on Burn Mortality.Annals of Surgery // Circ Shock. – 1987. – Vol.2(5). – P.121.
  76. Traber D.L., Herndon D.N., Stein M.D., Traber L.D., Flynn J.T., Niehaus G.D. The pulmonary lesion of smoke inhalation in an ovine model // Circ Shock. – 2012. – Vol.23(5). – P.311.
  77. Maybauer D.M., Maybauer M.O., Szab C., Cox R.A., Westphal M., Kiss L. The Peroxynitrite Catalyst WW-85 Improves Pulmonary Function in Ovine Septic Shock // Shock. – 2011. Vol. 28(4). – P.178-183.
  78. Calzavacca P., Ramchandra R., Booth L., Bellomo R., May C. N. Cardiovascular effects of beta-blockade in a sheep model of severe sepsis // Critical Care. – 2011. – P. 36. doi:10.1186/cc10405.
  79. Lange M., Ertmer C., Rehberg S., Morelli A., Köhler G., Kampmeier T.G., Van Aken H., Westphal M. Effects of two different dosing regimens of terlipressin on organ functions in ovine endotoxemia // Inflamm Res. – 2011. – Vol.60(5). – P.429-37. doi: 10.1007/s00011-010-0299-9.
  80. Su F., Huang H., He X., Simuen D., Xie J., Orbach A. Effects of a Novel Anticoagulant Compound in an Ovine Model of Septic Shock // Shock. – 2010. Vol. 28(4). – P.178-183.
  81. Redl H., Bahrami S. Large Animal Models: Baboons for Trauma, Shock, and Sepsis Studies // Shock. – 2005. Vol. 24(2). – P.88-93.
  82. Ranieri V. M. Drotrecogin alfa (activated) in adults with septic shock // The New England journal of medicine. – 2012. – Vol. 3. – P. 2055–2064.
  83. Taylor F., Chang A., Esmon C., D’Angelo A., Vigano-D’Angelo S., Blick K. Protein C prevents the coagulopathic and lethal effects of Escherichia coli infusion in the baboon // J Clin Invest. – 1987. – Vol.79. – P.918-25.
  84. Tsai C.J., Loh J.M., Proft T. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing // Virulence. – 2016. – Vol. 7(3). – P.214-29. doi: 10.1080/21505594.2015.1135289.

You may be interested