Justification and development of methods for the assessment of long-term and short-term memory of pigs based on the conditioned reflex of food acquisition in the maze

Original article

УДК 57.024
DOI: 10.57034/2618723X-2022-03-07

O.I. Aleshina*, PhD of biological sciences, researcher, https://orcid.org/0000-0003-0323-9511
A.V. Konovalov, Deputy Head of the Research and Testing Department
M.S. Vahviyainen, junior research
A.A. Kryazhevskikh, research laboratory assistant
N.G. Vengerovich, MD of medical sciences, Deputy Head of Research and Testing Department, https://orcid.org/0000-0003-3219-341X

Federal State Budgetary Institution State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation,
195043, Russia, St. Petersburg, 4 Lesoparkovaya st.

* E-mail: [email protected]

Keywords: pigs memory complex eating behavior maze scopolamine


The study was performed without external funding.

For citation:

Aleshina O.I, Konovalov A.V., Vahviyainen M.S., Kryazhevskikh A.A., Vengerovich N.G. Justification and development of methods for the assessment of long-term and short-term memory of pigs based on the conditioned reflex of food acquisition in the maze. Laboratory Animals for Science. 2022; 3. https://doi.org/10.29296/2618723X-2022-03-07


According to the analysis of scientific literature, it has been shown that pigs are the optimal biological object among laboratory animals for the assessment of cognitive impairment caused by various pharmaceutical substances of medicinal agents. It has been established that pigs have a number of advantages compared to rodents and primates (physiological indicators, structural and anatomical features, convenience and relative cheapness of keeping), which allows one to consider them as a convenient object for a wide range of preclinical studies, including the study of cognitive abilities. A technique has been developed and tested for assessing long-term and short-term memory of pigs, based on the formation of a search for food rewards in a T-shaped maze modification. Criteria allowing to evaluate features of memorization processes, storage and reproduction of information have been defined. The assessment of efficiency of the methodology for the evaluation of a skill developed in pigs (a long-term memory assessment) and the preservation of a memory trace about a changed place of food reinforcement (assessment of working memory and the transition of information to long-term memory) has been made. Testing and checking the technique efficiency has been carried out with intravenous administration of an amnesic agent scopolamine at a dose of 0,28 mg/kg.

Conflict of interest

The authors declare no conflict of interest.

Authors contribution

O.I. Aleshina, A.V. Konovalov — significant contribution to the conception or а design of the study, writing, agreement to be responsible for all aspects of the work, proper study and resolution of issues related to the validity of the data and the integrity of all parts of the paper.
M.S. Vakhviyainen, A.A. Kryazhevskikh — substantial contribution of the work, collecting, analyzing, and interpreting the results of the study.
N.G. Vengerovich — critical revision of the text content, approval of the final version of the articles for publication.


  1. Ушкалова Е.А. Фармакотерапия когнитивных нарушений различного генеза: современное состояние и перспективные направления // РМЖ. Неврология. Психиатрия. 2014. № 22: С. 1613. URL: https://www.rmj.ru/articles/nevrologiya/Farmakoterapiya_kognitivnyh_narusheniy_razlichnogo_geneza_sovremennoe_sostoyanie_i_perspektivnye_napravleniya/ (дата обращения: 04.2022).
  2. Held S., Baumgartner J., Kilbride A. et al. Foraging behaviour in domestic pigs (Sus scrofa): remembering and prioritizing food sites of different value // Anim. Cogn. 2005. Vol. 8. Р. 114–121.
  3. Markou A. Removing obstacles in neuroscience drug disco­very: The future path for animal models // Geyer Neuropsychopharmacology. 2009. Vol. 34. P. 74–89.
  4. van der Staay F.J. Animal models of behavioral dysfunctions: basic concepts and classifications, and an evaluation strategy // Brain Res.Rev. 2006. Vol. 52. N. 1. P. 131–159.
  5. Нотова С.В., Казакова Т. В., Маршинская О.В. Современные методы и оборудование для оценки поведения лабораторных животных (обзор) // Животноводство и кормопроизводство. 2018. Т. 101. № 1. С. 106–115. [Notova S.V., Kazakova T.V., Marshinskaya O.V. Modern methods and equipment for assessing the behavior of laboratory animals (review) // Zhivotnovodstvo i kormoproizvodstvo. 2018. Vol. 101. N. 1. P. 106–115 (In Russ.)].
  6. Kornum B.R., Thygesen K.S., Nielsen T.R. The effect of the inter-phase delay interval in the spontaneous object recognition test for pigs // Behav. Brain Res. 2007. Vol. 181. Р. 210–217. doi: 10.1016/j.bbr.2007.04.007.
  7. Ferguson S.A., Gopee N.V., Paule M.G. Female Mini-pig performance of temporal response differentation, incremental repeated aquisition, progressive ration operant tasks // Behav. Processes. 2009. Vol. 80. N. 1. Р. 28–34. doi: 10.1016/j.beproc.2008.08.00.
  8. Макарова М.Н., Матичин А.А., Матичина А.А. и др. Принципы выбора животных для научных исследований. Сообщение 1. Выбор модельных организмов на основании филогенетических связей // Лабораторные животные для научных исследований. 2022. № 2. С. 58–70. [Makarova M.N., Matichin A.A., Matichina A.A. i dr. Printsipy vybora zhivotnykh dlya nauchnykh issledovanii. Soobshchenie 1. Vybor model’nykh organizmov na osnovanii filogeneticheskikh svyazei // Laboratornye zhivotnye dlya nauchnykh issledovanii. 2022. N. 2. P. 58–70 (In Russ.)]. doi: 10.29296/2618723X-2022‑02‑07.
  9. Leenaars C.H., Kouwenaa C., Stafleu F.R. et al. Animal to human translation: A systematic scoping review of reported concordance rates // Journal of translational medicine. 2019. Vol. 17. N. 1. P. 1–22. doi: 10.1186/s1296701919762.
  10. Беляева Е.В., Устенко Ж.Ю., Гущин А.Я. Методика вскрытия и извлечения органов лабораторных животных. Сообщение 6: карликовые свиньи // Лабораторные животные для научных исследований. 2019. № 4. С. 55–77. [Belyaeva E.V., Ustenko Zh.Yu., Gushchin A.Ya. Metodika vskrytiya i izvlecheniya organov laboratornyh zhivotnyh. Soobshchenie 6: karlikovye svin’i // Laboratornye zhivotnye dlya nauchnyh issledovanij. 2019. N. 4. P. 55–77 (In Russ.)]. doi: 10.29296/2618723X-2019‑04‑08.
  11. Schook L., Beattie C., Beever J. Swine in biomedical research: creating the building blocks of animal models // Anim Biotechnol. 2005. Vol. 16. Р. 183–190.
  12. Arnfred S.M., Lind N.M., Hansen A.K. et al. Prepulse inhibition of the acoustic startle eye-blink in the Gottingen minipig // Behav. Brain Res. 2004. Vol. 151. Р. 295–301.
  13. Danielsen E.H., Smith D.F., Andersen F. et al. FDOPA meta­bolism in the adult porcine brain: influence of tracer circulation time and VOI selection on estimates of striatal DOPA decarboxylation // J. Neurosci Methods. 2001. Vol. 111. Р. 157–168. doi: 10.1016/s0165-0270(01)00453-8.
  14. de Groot J., Boersma W., van der Staay F.J. et al. Development of domestic animal models for the study of the ontogeny of human disease. 2005. P. 117–128. [In: Coe DHC (ed) Perinatal programming: early life determinants of adult health & disease. Taylor & Francis, London].
  15. Nunoya T., Shibuya K., Saitoh T. et al. Use of miniature pig for biomedical research, with reference to toxi­cologic studies // JTP. 2007. Vol. 20. Р. 125–132. doi: 10.1293/tox.20.125.
  16. Vodička P., Smetana K., Dvořánkova B. The miniature pig as an animal model in biomedical research // Ann. N. Y. Acad. Sci. 2005. Vol. 1049. Р. 161–171. doi: 10.1196/annals.1334.015.
  17. Lind N.M., Arnfred S.M., Hemmingsen R.P. Prepulse inhibition of the acoustic startle reflex in pigs and its disruption by D-amphetamine // Behav Brain Res. 2004. Vol. 155. Р. 217–222.
  18. Mikkelsen M., Moller A., Jensen L.H. MPTP-Induced parkinsonism in Minipigs: a behavioral, biochemical, and histological study // Neurotoxicol Teratol. 1999. Vol. 21. Р. 169–175.
  19. Swindle M.M., Makin A., Herron A.J., Ciubb Jr.F.J., Frazier K.S. Swine as models in biomedical. Research and Toxi­cology Testing // Veterinary Pathology. 2012. Vol. 49. N. 2. Р. 344–356.
  20. Nielsen T.R., Kornum B.R., Moustgaard A. A novel spatial delayed non-match to sample (DNMS) task in the Gottingen Minipig // Behav Brain Res. 2009. Vol. 196. Р. 93–98.
  21. Bouger P.C., van der Staay F.J. Rats with scopolamine- or MK-801‑induced spatial discrimination deficits in the cone field task: animal models for impaired spatial orientation performance // Neuropsychopharmacology. 2005. Vol. 15. Р. 331–346.
  22. Lachman S.J., Brown C.R. Behavior in a free choice multiple path elimination problem // J. Psychol. 1957. Vol. 43. Р. 27–40.
  23. Olton D.S., Samuelson R.J. Remembrance of places passed: spatial memory in rats // J. Exp. Psychol. 1976. Vol. 2. Р. 97–116.
  24. Rescorla R.A. Behavioral studies of pavlovian conditioning // Ann. Rev. Neurosci. 1988. Vol. 11. Р. 329–352.
  25. Wainwright P.E., Colombo J. Nutrition and the development of cognitive functions: interpretation of behavioural stu­dies in animals and human infants // Am. J. Clin. Nutr. 2006. Vol. 84. Р. 961–970. doi: 10.1093/ajcn/84.5.961.
  26. Koolhaas J.M., de Boer S.F., Buwalda B. Stress and adap­tation — toward ecologically relevant animal models // Curr. Dir. Psychol. Sci. 2006. Vol. 15. Р. 109–112.
  27. van der Staay F.J., Arndt S.S., Nordquist R.E. The standar­dization-generalization dilemma: a way out // Genes Brain Behav. 2010. Vol. 9. Р. 849–855. doi: 10.1111/j.1601-183X.2010.00628.x.
  28. van der Staay F.J. Assessment of age-associated cognitive deficits in rats: a tricky business // Neurosci Biobehav Rev. 2002. Vol. 26. Р. 753–759.
  29. Friess S.H., Ichord R.N., Owens K. Neurobehavioural functional deficits following closed head injury in the neonatal pig // Exp Neurol. 2007. Vol. 204. Р. 234–243. doi: 10.1016/j.expneurol.2006.10.010.
  30. Arts J.W.M., van der Staay F.J., Ekkel E.D. Working and refe­rence memory of pigs in the spatial hole board discrimination task // Behav. Brain Res. 2009. Vol. 205. Р. 303–306. doi: 10.1016/j.bbr.2009.06.014.
  31. Kirsch I., Lynn S.J., Vigorito M. et al. The role of cognition in classical and operant conditioning // J. Clin. Psychol. 2004. Vol. 60. P. 369–392. doi: 10.1002/jclp.10251.
  32. Laughlin K., Mendl M. Costs of acquiring and forgetting information affect spatial memory and its susceptibility to interference // Anim. Behav. 2004. Vol. 68. Р. 97–103. doi: 10.1016/j.anbehav.2003.10.019.

Received: 2022-06-29
Reviewed: 2022-08-17
Accepted for publication: 2022-08-24

You may be interested