Animal choice strategy for research. Report 1: animal choice based on phylogenic relationships


УДК 57.065
DOI: 10.29296/2618723X-2022-02-07

M.N. Makarova*, Doctor of Medical Sciences, Director,
A.A. Matichin, Research Fellow,
A.A. Maticina, Research Fellow,
V.G. Makarov, Doctor of Medical Sciences, Professor, Scientific Supervisor,

Research and manufacturing company «Home оf Pharmacy»,
188663, Russia, Leningrad oblast, Vsevolozhskiy district, Kuzmolovskiy t. s., Zavodskaya st. 3–245

* е-mail: [email protected]

Keywords: laboratory animals 3Rs animal research translation phylogeny


The study was performed without external funding.

For citation:

Makarova M.N., Matichin A.А., Maticina A.A., Makarov V.G. Animal choice strategy for research. Report 1: animal choice based on phylogenic relationships. Laboratory Animals for Science. 2022; 2.


Animal research has been and remain part and parcel of the humanity scientific sphere. There is biodiversity enormous of living organisms with special properties and characteristics that may be applied researches. During the first half of the 20th century, animal choice was based on principle of convenient for study. For example, giant axons of the squid Loligo forbesii for neurological studies, pigeon breast muscle for oxidative metabolism study and etc. In the last half of the 20th century laboratory animal biodiversity was decreased to main «model organisms», which has resulted in a low translation problem of preclinical research.

Now animal choice should be conditioned not only high translation, but also it should be followed the ethical principles. Attempts were made to make animal choice recommendations in «The Principles of Humane Experimental Technique» by Russell W.M.S. and Burch R.L. In practice proposed mechanism did not make specific recommendations. Garber J.C and his collaborators were subsequently asked to base their selection of the species on its evolutionary history. The knowledge of evolutionary biologists' application helps to solve the problem of low translation results, as well as to follow one of the principles of 3Rs — the replacement of the animal species. So understanding the phylogenetic position and evolutionary history of species can aid to determine the most beneficial and representative characteristics of the animal for a particular study in terms of translation, respecting the principle of relative substitution based on phylogenetic scale.

The present report considers various methods and makes recommendations for animal choice for model and toxicological study. The problem of presence of animal «laboratorisation» factor and its influence on data translation has been raised. A researcher, not an evolutionary, encounters a variety of different phylogenetic trees and a wealth of information about the evolution of a given biological aspect in justifying the animal choice based on a phylogenetic relationship. In this regard, an attempt was made to systematize the most commonly used animals in research depending on their evolutionary position.

Conflict of interest

V.G. Makarov — is the Editorin-chief.
M.N. Makarova — is a member of the Editorial board.

Authors contribution

M.N. Makarova — idea, analysis of scientific and methodological literature, writing, editing and revision of the text of the manuscript, responsibility for all aspects of the work related to the reliability of data.
A.A. Matichin — analysis of scientific and methodological literature.
A.A. Matichina — editing and revision of the text of the manuscript.
V.G. Makarov — editing the text of the manuscript, summarizing the results, approved the final version of the manuscript.


  1. Jørgensen C.B. August Krogh and Claude Bernard on basic principles in experimental physiology // BioScience. 2001. Vol. 51. N. 1. P. 59–61. DOI: 10.1641/0006-3568(2001)051[0059:AKACBO]2.0.CO;2.
  2. Krebs H.A. The August Krogh principle: «For many problems there is an animal on which it can be most conveniently studied» // Journal of Experimental Zoology. 1975. Vol. 194. N. 1. P. 221–226. DOI: 10.1002/jez.1401940115.
  3. Hodgkin A.L., Huxley A.F. Action potentials recorded from inside a nerve fibre // Nature. 1939. Vol. 144. N. 3651. P. 710–711. DOI: 10.1038/144710a0.
  4. Trumpler M. Converging images: Techniques of intervention and forms of representation of sodium-channel proteins in nerve cell membranes // Journal of the History of Biology. 1997. P. 55–89.
  5. Green S., Dietrich M.R., Leonelli S., Ankeny R.A. ‘Extreme’ organisms and the problem of generalization: interpreting the Krogh principle // History and Philosophy of the Life Sciences. 2018. Vol. 40. N. 4. P. 1–22. DOI: 10.1007/s40656‑018‑0231‑0.
  6. Holmes F.L. The Formation of a Scientific Life, 1900–1933. Oxford University Press, 1991. 512 p.
  7. Krogh A. The progress of physiology // Science. 1929. Vol. 70. N. 1809. P. 200–204. DOI: 10.1126/science.70.1809.20.
  8. Beach F.A. The snark was a boojum // American Psychologist. 1950. Vol. 5. N. 4. P. 115. DOI: 10.1037/h0056510.
  9. Logan C.A. The legacy of Adolf Meyer’s comparative approach: Worcester rats and the strange birth of the animal model // Integrative Physiological & Behavioral Science. 2005. Vol. 40. N. 4. P. 169–181. DOI: 10.1007/BF02915214.
  10. Macrì S., Richter S.H. The Snark was a Boojum-reloaded // Frontiers in Zoology. 2015. Vol. 12. N. 1. P. 1–13. DOI: 10.1186/1742‑9994‑12‑S1‑S20.
  11. Davis R.H. The age of model organisms // Nature Reviews Genetics. 2004. Vol. 5. N. 1. P. 69–76. DOI: 10.1038/nrg1250.
  12. Lynch V.J. Use with caution: Developmental systems divergence and potential pitfalls of animal models // The Yale journal of biology and medicine. 2009. Vol. 82. N. 2. P. 53.
  13. Bolker J.A. Animal models in translational research: Rosetta stone or stumbling block? // Bioessays. 2017. Vol. 39. N. 12. P. 1700089. DOI: 10.1002/bies.201700089.
  14. Dietrich M.R., Ankeny R.A., Chen P.M. Publication trends in model organism research // Genetics. 2014. Vol. 198. N. 3. P. 787–794. DOI: 10.1534/genetics.114.169714.
  15. Erick Peirson B.R., Kropp H., Damero J., Laubichler M.D. The diversity of experimental organisms in biomedical research may be influenced by biomedical funding // BioEssays. 2017. Vol. 39. N. 5. P. 1600258. DOI: 10.1002/bies.201600258.
  16. Report from the commission to the council and the European Parliament. Sixth Report on the Statistics on the Number of Animals used for Experimental and other Scientific Purposes in the Member States of the European Union SEC (2010) 117. European Commission, 2010. 14 p. URL:‑sixth-report.pdf.
  17. Report from the commission to the council and the European Parliament. Seventh Report on the Statistics on the Number of Animals used for Experimental and other Scientific Purposes in the Member States of the European Union. European Commission, 2013. 14 p. URL:‑ad69-61ead7e377e8.0001.03/DOC_1&format=PDF.
  18. Report from the commission to the European Parliament and the council. 2019 Report on the Statistics on the use of Animals for Scientific Purposes in the Member States of the European Union in 2015–2017. European Commission, 2020. 21 p. URL:‑f1‑en-main-part-1.pdf.
  19. Alstrup A.K.O., Wang T. Krogh-princippet: Det kan vi lære om og af nature // 2016. URL:
  20. Striedter G.F. Variation across species and levels: implications for model species research // Brain, Behavior and Evolution. 2019. Vol. 93. N. 2–3. P. 57–69. DOI: 10.1159/000499664.
  21. Bolker J.A. Model systems in developmental biology // BioEssays. 1995. Vol. 17. N. 5. P. 451–455. DOI: 10.1002/bies.950170513.
  22. Kola I., Landis J. Can the pharmaceutical industry reduce attrition rates? // Nature reviews Drug discovery. 2004. Vol. 3. N. 8. P. 711–716. DOI: 10.1038/nrd1470.
  23. Van der Worp H.B., Howells D.W., Sena E.S. et al. Can animal models of disease reliably inform human studies? // PLoS medicine. 2010. Vol. 7. N. 3. P. e1000245. DOI: 10.1371/journal.pmed.1000245.
  24. Garner J.P., Gaskill B.N., Weber E.M. et al. Introducing Therioepistemology: the study of how knowledge is gained from animal research // Lab. animal. 2017. Vol. 46. N. 4. P. 103–113. DOI: 10.1038/laban.1224.
  25. Leenaars C.H., Kouwenaa C., Stafleu F.R. et al. Animal to human translation: A systematic scoping review of reported concordance rates // Journal of translational medicine. 2019. Vol. 17. N. 1. P. 1–22. DOI: 10.1186/s12967‑019‑1976‑2.
  26. Matthews K., Christmas D., Swan J., Sorrell E. Animal models of depression: navigating through the clinical fog // Neuroscience & Biobehavioral Reviews. 2005. Vol. 29. N. 4–5. P. 503–513. DOI: 10.1016/j.neubiorev.2005.03.005.
  27. Insel T.R. From animal models to model animals // Biological psychiatry. 2007. Vol. 62. N. 12. P. 1337–1339. DOI: 10.1016/j.biopsych.2007.10.001.
  28. Jucker M. The benefits and limitations of animal models for translational research in neurodegenerative diseases // Nature medicine. 2010. Vol. 16. N. 11. P. 1210–1214. DOI: 10.1038/nm.2224.
  29. Nestler E.J., Hyman S.E. Animal models of neuropsychiatric disorders // Nature neuroscience. 2010. Vol. 13. N. 10. P. 1161–1169. DOI: 10.1038/nn.2647.
  30. Pratt J., Winchester C., Dawson N., Morris B. Advancing schizophrenia drug discovery: optimizing rodent models to bridge the translational gap // Nature reviews Drug discovery. 2012. Vol. 11. N. 7. P. 560–579. DOI: 10.1038/nrd3649.
  31. Hyman S.E. Revolution stalled // Science Translational Medicine. 2012. Vol. 4. N. 155. P. 155cm11. DOI: 10.1126/scitranslmed.3003142.
  32. Blanchard D.C., Summers C.H., Blanchard R.J. The role of behavior in translational models for psychopathology: functionality and dysfunctional behaviors // Neuroscience & Biobehavioral Reviews. 2013. Vol. 37. N. 8. P. 1567–1577. DOI: 10.1016/j.neubiorev.2013.06.008.
  33. Garner J.P. The significance of meaning: why do over 90% of behavioral neuroscience results fail to translate to humans, and what can we do to fix it? // ILAR Journal. 2014. Vol. 55. N. 3. P. 438–456. DOI: 10.1093/ilar/ilu047.
  34. Horwitz R.I., Abell J.E., Christian J.B., Wivel A.E. Right answers, wrong questions in clinical research // Science Translational Medicine. 2014. Vol. 6. N. 221. P. 221fs5. DOI: 10.1126/scitranslmed.3007649.
  35. O’Tuathaigh C.M., Waddington J.L. Closing the translational gap between mutant mouse models and the clinical reality of psychotic illness // Neuroscience & Biobehavioral Reviews. 2015. Vol. 58. P. 19–35. DOI: 10.1016/j.neubiorev.2015.01.016.
  36. Rosshart S.P., Herz J., Vassallo B.G. et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses // Science. 2019. Vol. 365. N. 6452. P. eaaw4361. DOI: 10.1126/science.aaw4361.
  37. Walker R.L., Eggel M. From mice to monkeys? Beyond orthodox approaches to the ethics of animal model choice // Animals. 2020. Vol. 10. N. 1. P. 77. DOI: 10.3390/ani10010077.
  38. Russell W.M.S., Burch R.L. The principles of humane experimental technique. Methuen & Co, Ltd., 1959 (as reprinted 1992).
  39. Garber J.C., Barbee R.W., Bielitzki J.T., et al. Guide for the care and use of laboratory animals // The National Academic Press, Washington DC, 2011. N. 8. 220 p.
  40. Directive 2010/63/EU Of The European Parliament And Of The Council. Official Journal of the European Union, 2010. 47 p. — URL:
  41. Balls M. The principles of humane experimental technique: timeless insights and unheeded warnings // ALTEX-Alternatives to animal experimentation. 2010. Vol. 27. N. 2. P. 144–148. DOI: 10.14573/altex.2010.2.144.
  42. Tannenbaum J., Bennett B. T. Russell and Burch’s 3Rs then and now: the need for clarity in definition and purpose // Journal of the American Association for Laboratory Animal Science. 2015. Vol. 54. N. 2. P. 120–132.
  43. Cain A.J., Harrison G.A. Phyletic Weighting // Proceedings of the Zoological Society of London. 1960. Vol. 135. N. 1. P. 1–31. DOI: 10.1111/j.1469-7998.1960.tb05828.x.
  44. Penny D., Hendy M.D., Steel M.A. Progress with methods for constructing evolutionary trees // Trends in Ecology & Evolution. 1992. Vol. 7. N. 3. P. 73–79. DOI: 10.1016/0169-5347(92)90244-6.
  45. Suga N. Principles of auditory information-processing derived from neuroethology // Journal of Experimental Biology. 1989. Vol. 146. N. 1. P. 277–286. DOI: 10.1242/jeb.146.1.277.
  46. Hopkins C.D. Evolution of electric communication channels of mormyrids // Behavioral Ecology and Sociobiology. 1980. Vol. 7. N. 1. P. 1–13. DOI: 10.1007/BF00302513.
  47. Capranica R.R., Rose G. Frequency and temporal processing in the auditory system of anurans // Neuroethology and behavioral physiology. 1983. P. 136–152. DOI: 10.1007/978‑3‑642‑69271‑0_10.
  48. Калатанова А.В. и др. Использование защечных мешков хомяков при проведении доклинических исследований лекарственных средств, диспергируемых в полости рта // Фармация. 2016. Т. 7. С. 50–55 [Kalatanova A.V. et al. Ispol’zovanie zashchechnyh meshkov homyakov pri provedenii doklinicheskih issledovanij lekarstvennyh sredstv, dispergiruemyh v polosti rta // Farmaciya. 2016. Vol. 7. P. 50–55 (In Russ.)].
  49. Рыбакова А.В., Макарова М.Н. Использование хомяков в биомедицинских исследованиях // Международный вестник ветеринарии. 2017. Т. 3. С. 148–157 [Rybakova A.V., Makarova M.N. Ispol’zovanie homyakov v biomedicinskih issledovaniyah // Mezhdunarodnyj vestnik veterinarii. 2017. Vol. 3. P. 148–157 (In Russ.)].
  50. Bowmaker J.K. Evolution of colour vision in vertebrates // Eye. 1998. Vol. 12. N. 3. P. 541–547. DOI: 10.1038/eye.1998.143.
  51. Sheehan M.J., Tibbetts E.A. Specialized face learning is associated with individual recognition in paper wasps // Science. 2011. Vol. 334. N. 6060. P. 1272–1275. DOI: 10.1126/science.1211334.
  52. Nottebohm F., Stokes T.M., Leonard C.M. Central control of song in the canary, Serinus canaries // Journal of Comparative Neurology. 1976. Vol. 165. N. 4. P. 457–486. DOI: 10.1002/cne.901650405.
  53. Finlay B.L. Generic Homo sapiens and unique Mus musculus: establishing the typicality of the modeled and the model species // Brain, Behavior and Evolution. 2019. Vol. 93. N. 2–3. P. 122–136. DOI: 10.1159/000500111.
  54. Bolker J.A. Exemplary and surrogate models: Two modes of representation in biology // Perspectives in biology and medicine. 2009. Vol. 52. N. 4. P. 485–499. DOI: 10.1353/pbm.0.0125.
  55. Bolker J.A. Models in context: biological and epistemological niches // In Entangled Life. Springer. Dordrecht. 2014. P. 153–166. DOI: 10.1007/978‑94‑007‑7067‑6_8.
  56. Springer M.S., Murphy W.J. Mammalian evolution and biomedicine: new views from phylogeny // Biological Reviews. 2007. Vol. 82. N. 3. P. 375–392. DOI: 10.1111/j.1469-185X.2007.00016.x.
  57. Nesse R.M., Bergstrom C.T., Ellison P.T. et al. Making evolutionary biology a basic science for medicine // Proceedings of the National Academy of Sciences. 2010. Vol. 107. Suppl. 1. P. 1800–1807. DOI: 10.1073/pnas.0906224106.
  58. Perlman R.L. Mouse models of human diseaseAn evolutionary perspective // Evolution, medicine, and public health. 2016. Vol. 2016. N. 1. P. 170–176. DOI: 10.1093/emph/eow014.
  59. Nesse R.M. Good reasons for bad feelings: insights from the frontier of evolutionary psychiatry. Penguin, 2019. 384 p.
  60. Metscher B.D., Ahlberg P.E. Zebrafish in context: uses of a laboratory model in comparative studies // Developmental biology. 1999. Vol. 210. N. 1. P. 1–14. DOI: 10.1006/dbio.1999.9230.
  61. Preuss T.M. Taking the measure of diversity: comparative alternatives to the model-animal paradigm in cortical neuroscience // Brain, behavior and evolution. 2000. Vol. 55. N. 6. P. 287–299. DOI: 10.1159/000006664.
  62. Arendt J., Reznick D. Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation? // Trends in ecology & evolution. 2008. Vol. 23. N. 1. P. 26–32. DOI: 10.1016/j.tree.2007.09.011.
  63. Wagner G.P. Homology, genes, and evolutionary innovation. Princeton university press, 2014. 496 p. DOI: 10.1515/9781400851461.
  64. Casal M., Haskins M. Large animal models and gene therapy // European journal of human genetics. 2006. Vol. 14. N. 3. P. 266–272. DOI: 10.1038/sj.ejhg.5201535.
  65. Perrin S. Preclinical research: Make mouse studies work // Nature. 2014. Vol. 507. N. 7493. P. 423–425. DOI: 10.1038/507423a.
  66. Clayton J. A., Collins F. S. Policy: NIH to balance sex in cell and animal studies // Nature. 2014. Vol. 509. N. 7500. P. 282–283. DOI: 10.1038/509282a.
  67. Scriver C.R., Waters P.J. Monogenic traits are not simple: lessons from phenylketonuria // Trends in genetics. 1999. Vol. 15. N. 7. P. 267–272. DOI: 10.1016/S0168-9525(99)01761-8.
  68. Wagner A. Causal drift, robust signaling, and complex disease // PloS one. 2015. Vol. 10. N. 3. P. e0118413. DOI: 10.1371/journal.pone.0118413.
  69. Day C. This simian world. New York: Alfred A. Knopf, 1920. 97 p.
  70. Chalfin L., Dayan M., Levy D.R. et al. Mapping ecologically relevant social behaviours by gene knockout in wild mice // Nature communications. 2014. Vol. 5. N. 1. P. 1–10. DOI: 10.1038/ncomms5569.
  71. Peirson S.N., Brown L.A., Pothecary C.A. et al. Light and the laboratory mouse // Journal of neuroscience methods. 2018. Vol. 300. P. 26–36. DOI: 10.1016/j.jneumeth.2017.04.007.
  72. Krubitzer L., Campi K.L., Cooke D.F. All rodents are not the same: a modern synthesis of cortical organization // Brain, behavior and evolution. 2011. Vol. 78. N. 1. P. 51–93. DOI: 10.1159/000327320.
  73. Sullivan A.P., Bird D.W., Perry G.H. Human behaviour as a long-term ecological driver of non-human evolution // Nature Ecology & Evolution. 2017. Vol. 1. N. 3. P. 1–11. DOI: 10.1038/s41559‑016‑0065.
  74. Rader K. Making mice: Standardizing animals for American biomedical research, 1900–1955. Princeton University Press, 2004. 299 p.
  75. Rader K. The metaphor of domestication in genetics. In: Cassidy, R, Mullins, M (eds) Where the Wild Things are Now: Domestication Reconsidered. Oxford: Berg, 2077. P. 183–204.
  76. Francis R.C. Domesticated: evolution in a man-made world. WW Norton & Company, 2015. 496 p.
  77. Yang H., Wang J.R., Didion J.P. et al. Subspecific origin and haplotype diversity in the laboratory mouse // Nature genetics. 2011. Vol. 43. N. 7. P. 648–655. DOI: 10.1038/ng.847.
  78. Beura L.K., Hamilton S.E., Bi K. et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice // Nature. 2016. Vol. 532. N. 7600. P. 512–516. DOI: 10.1038/nature17655.
  79. Reese T.A., Bi K., Kambal A. et al. Sequential infection with common pathogens promotes human-like immune gene expression and altered vaccine response // Cell host & microbe. 2016. Vol. 19. N. 5. P. 713–719. DOI: 10.1016/j.chom.2016.04.003.
  80. Martin B., Ji S., Maudsley S. et al. «Control» laboratory rodents are metabolically morbid: why it matters // Proceedings of the National Academy of Sciences. 2010. Vol. 107. N. 14. P. 6127–6133. DOI: 10.1073/pnas.0912955107.
  81. Mo C., Renoir T., Hannan A.J. What’s wrong with my mouse cage? Methodological considerations for modeling lifestyle factors and gene — environment interactions in mice // Journal of neuroscience methods. 2016. Vol. 265. P. 99–108. DOI: 10.1016/j.jneumeth.2015.08.008.
  82. Bayne K. Environmental enrichment and mouse models: Current perspectives // Animal models and experimental medicine. 2018. Vol. 1. N. 2. P. 82–90. DOI: 10.1002/ame2.12015.
  83. Collins S.M., Surette M., Bercik P. The interplay between the intestinal microbiota and the brain // Nature Reviews Microbiology. 2012. Vol. 10. N. 11. P. 735–742. DOI: 10.1038/nrmicro2876.
  84. Cryan J.F., Dinan T.G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behavior // Nature reviews neuroscience. 2012. Vol. 13. N. 10. P. 701–712. DOI: 10.1038/nrn3346.
  85. Dinan T.G., Borre Y.E., Cryan J.F. Genomics of schizophrenia: time to consider the gut microbiome? // Molecular psychiatry. 2014. Vol. 19. N. 12. P. 1252–1257. DOI: 10.1038/mp.2014.93.
  86. Valles-Colomer M., Falony G., Darzi Y. et al. The neuroactive potential of the human gut microbiota in quality of life and depression // Nature microbiology. 2019. Vol. 4. N. 4. P. 623–632. DOI: 10.1038/s41564‑018‑0337‑x.
  87. Kumar S., Stecher G., Suleski M., Hedges S.B. TimeTree: a resource for timelines, timetrees, and divergence times // Molecular biology and evolution. 2017. Vol. 34. N. 7. P. 1812–1819. DOI: 10.1093/molbev/msx116.
  88. Upham N.S., Esselstyn J.A., Jetz W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation // PLoS biology. 2019. Vol. 17. N. 12. P. e3000494. DOI: 10.1371/journal.pbio.3000494.
  89. Steiper M.E., Young N.M. Primate molecular divergence dates // Molecular phylogenetics and evolution. 2006. Vol. 41. N. 2. P. 384–394. DOI: 10.1016/j.ympev.2006.05.021.
  90. Amills M., Megens H.J., Manunza A. et al. A genomic perspective on Wild Boar Demography and Evolution // Ecology, Conservation and Management of Wild Pigs and Peccaries. Cambridge University Press, 2017. P. 376–387. DOI: 10.1017/9781316941232.036.
  91. Eizirik E., Murphy W.J., Koepfli K.P. et al. Pattern and timing of diversification of the mammalian order Carnivora inferred from multiple nuclear gene sequences // Molecular Phylogenetics and Evolution. 2010. Vol. 56. N. 1. P. 49–63. DOI: 10.1016/j.ympev.2010.01.033.
  92. Chevret P., Dobigny G. Systematics and evolution of the subfamily Gerbillinae (Mammalia, Rodentia, Muridae) // Molecular phylogenetics and evolution. — 2005; 35(3): 674–688. DOI: 10.1016/j.ympev.2005.01.001.
  93. Zhang Q., Xia L., Kimura Y., et al. Tracing the origin and diversification of Dipodoidea (Order: Rodentia): Evidence from fossil record and molecular phylogeny // Evolutionary Biology. — 2013; 40(1): 32–44. DOI: 10.1007/s11692‑012‑9167‑6.
  94. Woods R., Barnes I., Brace S., Turvey S.T. Ancient DNA suggests single colonization and within-archipelago diversification of Caribbean caviomorph rodents // Molecular biology and evolution. 2021. Vol. 38. N. 1. P. 84–95. DOI: 10.1093/molbev/msaa189.
  95. Mestas J., Hughes C.C. Of mice and not men: differences between mouse and human immunology // The Journal of Immunology. 2004. Vol. 172. N. 5. P. 2731–2738. DOI: 10.4049/jimmunol.172.5.2731.
  96. Webb A.E., Gerek Z.N., Morgan C.C. et al. Adaptive evolution as a predictor of species-specific innate immune response // Molecular biology and evolution. 2015. Vol. 32. N. 7. P. 1717–1729. DOI: 10.1093/molbev/msv051.
  97. Seok J., Warren H.S., Cuenca A.G. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases // Proceedings of the National Academy of Sciences. 2013. Vol. 110. N. 9. P. 3507–3512. DOI: 10.1073/pnas.1222878110.
  98. Fink M.P. Animal models of sepsis // Virulence. 2014. Vol. 5. N. 1. P. 143–153. DOI: 10.4161/viru.26083.
  99. Edrey Y.H., Hanes M., Pinto M. et al. Successful aging and sustained good health in the naked mole rat: a long-lived mammalian model for biogerontology and biomedical research // ILAR journal. 2011. Vol. 52. N. 1. P. 41–53. DOI: 10.1093/ilar.52.1.41.
  100. Bolker J.A. Selection of models: evolution and the choice of species for translational research // Brain, Behavior and Evolution. 2019. Vol. 93. N. 2–3. P. 82–91. DOI: 10.1159/000500317.
  101. van der Staay F.J., Arndt S.S., Nordquist R.E. Evaluation of animal models of neurobehavioral disorders // Behavioral and Brain Functions. 2009. Vol. 5. N. 1. P. 1–23. DOI: 10.1186/1744‑9081‑5‑11.
  102. Brenowitz E.A., Zakon H.H. Emerging from the bottleneck: benefits of the comparative approach to modern neuroscience // Trends in neurosciences. 2015. Vol. 38. N. 5. P. 273–278. DOI: 10.1016/j.tins.2015.02.008.
  103. Yartsev M.M. The emperor’s new wardrobe: rebalancing diversity of animal models in neuroscience research // Science. 2017. Vol. 358. N. 6362. P. 466–469. DOI: 10.1126/science.aan8865.
  104. Hale M.E. Toward diversification of species models in neuroscience // Brain, Behavior and Evolution. 2019. Vol. 93. N. 2–3. P. 166–168. DOI: 10.1159/000500499.
  105. Juntti S. The future of gene-guided neuroscience research in non-traditional model organisms // Brain, behavior and evolution. 2019. Vol. 93. N. 2–3. P. 108–121. DOI: 10.1159/000500072.

Received: 2022-03-23
Reviewed: 2022-05-17
Accepted for publication: 2022-05-31

You may be interested