Diet-Induced Models Of Metabolic Disorders. Experimental Metabolic Syndrome

DOI: 10.29296/2618723X-2018-01-08

Makarova M.N., Makarov V.G. HOUM OF PHARMACY Research-and-Production Association; 3, Zavodskaya St., Build. 245, Kuzmolovsky Urban-Type Settlement, Vsevolozhsky District, Leningrad Region 188663 e-mail: [email protected]


Keywords: metabolic syndrome diet-induced model

For citation:

Makarova M.N., Makarov V.G. Diet-Induced Models Of Metabolic Disorders. Experimental Metabolic Syndrome. Laboratory Animals for Science. 2018; 1. https://doi.org/10.29296/2618723X-2018-01-08

Abstract

A significant increase in the prevalence of metabolic syndrome (MS) over the past 2 decades contributing to the growth of mortality due to coronary heart disease, stroke, cancer and other diseases. The specified necessitates the creation of adequate experimental models to search for means of prevention and treatment of MS. The closest the etiology and pathogenesis of MS are diet-induced models that use high-calorie diets with increased fat content (up to 60% of the total caloric content of the diet), sucrose and fructose (60-70% of total calories) and combined diets (43% fat and 15-17% sucrose or fructose, and others). To accelerate the development of manifestations of MS high-calorie diets combined with the introduction of small doses of streptozotocin. Of the MS model in rodents, the most commonly used at present, do not give an accurate picture of human pathology, so along with them, we need to use the MS model on rabbits, mini-pigs and other animals more closely at the anatomy and physiology of man. To assess the development of MS using the parameters of lipid, protein and carbohydrate metabolism, anthropometric and many other parameters.

References

  1. Koopmans S.J., Schuurman T. Considerations on pig models for appetite, metabolic syndrome and obese type 2 diabetes: From food intake to metabolic disease. Eur J Pharmacol. 2015 Jul 15;759:231–9. DOI: 10.1016/j.ejphar.2015.03.044.
  2. Smoljanskijj BL, Lifljandskijj VG. Lechebnoe pitanie. M. : Eksmo, 2010. 688 s.
  3. Kravchuk E.N., Galagudza M.M. Jeksperimental’nye modeli metabolicheskogo sindroma. Arterial’naja gipertenzija. 2014. Vol.20; 5: 377–83.
  4. Arias-Mutis O.J., Marrachelli V.G., Ruiz-Saurí A., Alberola A., Morales J.M., Such-Miquel L., Monleon D., Chorro F.J., Such L., Zarzoso M. Development and characterization of an experimental model of diet-induced metabolic syndrome in rabbit. PLOS ONE, |May 23, 2017: 18. DOI: 10.1371/journal.pone.0178315. eCollection 2017.
  5. Panchal S.K. and Brown L. Rodent Models for Metabolic Syndrome Research. / J. Biomed. Biotechnol. Volume 2011, Article ID 351982, 14 pages. DOI:10.1155/2011/351982.
  6. Aydin S., Aksoy A., Aydin S., Kalayci M., Yilmaz M., Kuloglu T., Citil C., Catak Z. Today’s and yesterday’s of pathophysiology: Biochemistry of metabolic syndrome and animal models / Suleyman Aydin [et al.]. Nutrition. 2014. Jan; 30 (1): 1–9. DOI: 10.1016/j.nut.2013.05.013.
  7. Balkau B., Valensi P., Eschwege E., Slama G. A review of the metabolic syndrome. Diabetes Metab J. 2007;33:405–13. DOI: 10.1016/j.diabet.2007.08.001
  8. Kovaleva M.A., Makarova M.N., Selezneva A.I., Makarov V.G. Primenenie zhivotnyh so spontannoj gipertenziej dlja modelirovanija metabolicheskogo sindroma. Obzory po klinicheskoj farmakologii i lekarstvennoj terapii, 2012; 4: 91–94.
  9. Neuhofer A., Wernly B., Leitner L., Sarabi A., Sommer N.G., Staffler G., Zeyda M., Stulnig T.M. An accelerated mouse model for atherosclerosis and adipose tissue inflammation. Cardiovasc Diabetol. 2014 Jan 17;13:23. DOI: 10.1186/1475-2840-13-23.
  10. Kim H.J., Kim S., Lee A.Y., Jang Y., Davaadamdin O., Hong S.-H., Kim J.S., Cho M.-H. The Effects of Gymnema sylvestre in High-Fat Diet-Induced Metabolic Disorders. American. J. Chin. Med., 2017. Vol. 45; 4: 1–20. DOI: 10.1142/S0192415X17500434
  11. Ajiboye T.O., Hussaini A.A., Nafiu B.Y., Ibitoye O.B. Aqueous seed extract of Hunteria umbellata (K. Schum.) Hallier f. (Apocynaceae) palliates hyperglycemia, insulin resistance, dyslipidemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome in rats. J. Ethnopharmacol. 2017 Feb 23; 198: 184–93. DOI: 10.1016/j.jep.2016.11.043
  12. Lucero D., Olano C., Bursztyn M., Morales C., Stranges A., Friedman S., Macri E.V., Schreier L., Zago V. Supplementation with n-3, n-6, n-9 fatty acids in an insulin resistance animal model: Does it improve VLDL quality? Food Funct. 2017 May 24; 8 (5): 2053–61. DOI: 10.1039/c7fo00252a.
  13. Chu D.T., Malinowska E., Jura M., Kozak L.P. C57BL/6J mice as a polygenic developmental model of diet-induced obesity. Physiol Rep. 2017 Apr; 5 (7). pii: e13093. DOI: 10.14814/phy2.13093.
  14. Wilson T.A., Nicolosi R.J., Delaney B., Chadwell K., Moolchandani V., Kotyla T., Ponduru S., Zheng G.H., Hess R., Knutson N., Curry L., Kolberg L., Goulson M., Ostergren K. Reduced and high molecular weight barley beta-glucans decrease plasma total and non-HDL-cholesterol in hypercholesterolemic Syrian golden hamsters. J Nutr. 2004 Oct; 134 (10): 2617–22.
  15. Dourmashkin J.T, Chang G.Q., Gayles E.C., Hill J.O., Fried S.K., Julien C., Leibowitz S.F. Different forms of obesity as a function of diet composition. Int J Obes (Lond) 2005; 29: 1368–78. DOI: 10.1038/sj.ijo.0803017.
  16. Zern T.L., West K.L., Fernandez M.L. Grape polyphenols decrease plasma triglycerides and cholesterol accumulation in the aorta of ovariectomized guinea pigs. J. Nutr 2003; 133: 2268–72.
  17. Hansen A.K. Animal Models of Metabolic and Inflammatory Diseases In: J. Hau, S.J. Schapiro (editors) Handbook of Laboratory Animal Science, Volume III, Third Edition. Animal Models. CRC Press. – 2013. – P. 159–94.
  18. Zhang X., Lerman L.O. Investigating the Metabolic Syndrome: Contributions of Swine Models. Toxicol Pathol. 2016 Apr; 44 (3): 358–66. DOI: 10.1177/0192623316630835.
  19. Neeb Z.P., Edwards J.M., Alloosh M., Long X., Mokelke E.A., Sturek M. Metabolic Syndrome and Coronary Artery Disease in Ossabaw Compared with Yucatan Swine. Comparative Medicine. – 2010. – Vol. 60, 4: 300–15.
  20. Litten-Brown J.C., Corson A.M., Clarke L. Porcine models for the metabolic syndrome, digestive and bone disorders: a general overview. Animal. 2010 Jun;4(6):899-920. DOI: 10.1017/S1751731110000200.
  21. M. E. Spurlock, N.K. Gabler The Development of Porcine Models of Obesity and the Metabolic Syndrome J. Nutr. 2008.138: 397–402.
  22. Westover A.J., Johnston K.A., Buffington D.A., Humes H.D. An Immunomodulatory Device Improves Insulin Resistance in Obese Porcine Model of Metabolic Syndrome. J. Diabetes Res. 2016. Vol. 2016, Article ID 3486727, 10 pages. DOI: 10.1155/2016/3486727.
  23. Sham J.G., Simianu V.V., Wright A.S., Stewart S.D., Alloosh M., Sturek M., Cummings D.E., Flum D.R. Evaluating the Mechanisms of Improved Glucose Homeostasis after Bariatric Surgery in Ossabaw Miniature Swine. J. Diabetes Res. Vol. 2014, Article ID 526972, 7 pages. DOI: 10.1155/2014/526972.
  24. Larsen M.O., Rolin B., Wilken M., Carr R.D., Svendsen O. High-Fat High-Energy Feeding Impairs Fasting Glucose and Increases Fasting Insulin Levels in the Gettingen Minipig: Results from a Pilot Study. Ann. N.Y. Acad. Sci. 2002 Jun; 967: 414–23.
  25. Bell L.N., Lee L., Saxena R., Bemis K.G., Wang M., Theodorakis J.L., Vuppalanchi R., Alloosh M., Sturek M., Chalasani N. Serum proteomic analysis of diet-induced steatohepatitis and metabolic syndrome in the Ossabaw miniature swine. Am. J. Physiol. Gastrointest. Liver Physiol. 2010. 298 (5), G746-G754. DOI: 10.1152/ajpgi.00485.2009.
  26. Liang T., Alloosh M., Bell L.N., Fullenkamp A., Saxena R., Van Alstine W., Bybee P., Werling K., Sturek M., Chalasani N., Masuoka H.C. Liver Injury and Fibrosis Induced by Dietary Challenge in the Ossabaw Miniature Swine. PLoS ONE, 2015. 10 (5): e0124173. DOI:10.1371/journal.pone.0124173

You may be interested