Cats in laboratory studies. Literature review

DOI: 10.29296/2618723X-2021-01-09

M. Makarova, ORCID 0000-0003-3176-6386

Research and manufacturing company «Home оf Pharmacy»,
188663, Russia, Leningrad oblast, Vsevolozhskiy district, Kuzmolovskiy t.s., Zavodskaya st. 3-245

Е-mail:  [email protected]


Keywords: cats laboratory animals preclinical studies

For citation:

Makarova M.N. Cats in laboratory studies. Literature review. Laboratory Animals for Science. 2021; 1. https://doi.org/10.29296/2618723X-2021-01-09

Abstract

For many years, cats have been successfully used in preclinical studies. It should be noted that with the popularization and active implementation of the principles of humane treatment of animals in research (3Rs principles) all over the world, the number of animals of this species has begun to decrease. Bioethics commissions are examining in detail the protocols of research using this type of animal. According to Understanding Animal Research in England (2019), 131 cats were used for preclinical studies. A figure not comparable to the number of mice and rats used in preclinical studies, nevertheless, cats as a test system make a unique contribution to the drug development process, this type of animal indispensable in experimental neurology, ophthalmology, retroviruses research, hereditary and immunodeficiency diseases. During the development of genetic engineering and breeding, it was planned that over time highly-organized animals, such as cats, would be completely replaced by knockout transgenic mice for preclinical research purposes. It was assumed that knockout transgenic mice would reflect all the necessary experimental models to study specific gene mutations. In practice, however, knockout mice with defects of certain genes could have no clinical signs of pathology, have a lethal form of the disease, or have clinical signs that do not correspond to those in humans. At the same time, many hereditary diseases of cats are almost identical to those in humans, which increases the transnationality of the data obtained. It should be noted that the size of this type of laboratory animal allows conducting studies, the design of which involves taking a large volume of biomaterial (blood, urine, etc.), these advantages over rodents (mouse, rat, hamster, etc.) make the cat an indispensable test system for studies on the evaluation of pharmacokinetic parameters for several test objects. The article describes the main areas of preclinical studies in which it is advisable to use cats as test systems (models of infectious diseases, models of non-infectious diseases, eye diseases, models of respiratory system pathology, models on isolated cat organs); hereditary diseases of cats are also considered. According to Understanding Animal Research in England (2019), 131 cats were used for preclinical studies. This figure is not comparable to the number of mice and rats used in preclinical studies. nevertheless, cats, as a test system, make a unique contribution to the drug development process. This animal species is indispensable in experimental neurology, ophthalmology, retrovirus research, hereditary and immunodeficiency diseases. In the course of the development of genetic engineering and breeding, it was planned that over time, highly-organized animals, for preclinical research purposes, would be completely replaced by knockout transgenic mice. It was assumed that knockout transgenic mice would reflect all the necessary experimental models to study specific gene mutations. In practice, however, knockout mice with defects of certain genes could have no clinical signs of pathology, have a lethal form of the disease, or have clinical signs that do not correspond to those in humans. At the same time, many hereditary diseases of cats are almost identical to those in humans, which increases the transnationality of the data obtained. It should be noted that the size of this type of laboratory animal allows conducting studies, the design of which involves taking a large volume of biomaterial (blood, urine, etc.). These advantages over rodents (mouse, rat, hamster, etc.) make the cat an indispensable test system for studies on the evaluation of pharmacokinetic parameters for several test objects. The article describes the main directions of preclinical studies in which it is advisable to use cats as test systems (models of infectious diseases, models of non-infectious diseases, eye diseases, models of respiratory system pathology, models on isolated cat organs); hereditary diseases of cats are also considered.

Full text avaliable in Russain only

References

  1. Griffin B., Baker H.J. Domestic cat as laboratory animals. In: Fox JG, Anderson L.C., Loew F.M., Quimby F.W., eds. Laboratory Animal Medicine. Second ed. San Diego. Academic Press (Elsevier Science). 2002.
  2. Gruys, E., Van de Stadt, M., Blok, J.J., Tooten, P.C.J., Van der Linde-Sipman, J.S., Niewold, T.A. Feline amyloidosis. “Proceedings of the First International Feline Genetic Disease Conference,” Univ. of Pennsylvania. 1998.
  3. Boyce, J.T., DiBartola, S.P., Chen, D.J. and Gasper, P.W. Familial renal amyloidosis in Abyssinian cats // Vet. Pathol. – 1984. – Vol. 21(1). – P. 33-38. doi: 10.1177/030098588402100106
  4. Kramer, J.W., Davis, W.C., Prieur, D.J. The Chediak-Higashi syndrome of cats // Lab. Invest. – 1977. – Vol. 36. – P.554-562.
  5. Jones B.R., Hayden M.R., Lewis S., Ginzinger D.G. Chylomicronemia and inherited lipoprotein lipase deficiency in domestic cats. In “Proceedings of the First International Feline Genetic Disease Conference,” Univ. of Pennsylvania. 1998.
  6. Patterson, D.E, Minor, R.R. Hereditary fragility and hyperextensibility of the skin of cats: a defect in collagen fibrillogenesis // Lab. Invest. – Vol. 37. – P.170-179.
  7. Paasch, L.H., Zook, B.C. The pathogenesis of endocardial fibroelastosis in Burmese cats // Lab. Invest. – 1980. – Vol. 42. – P.197-204.
  8. Prusiner, S.B. Prion diseases. In “The Metabolic and Molecular Bases of Inherited Diseases” (C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, eds.). McGraw-Hill, New York. 1995.
  9. Johnson, K.H. Globoid cell leukodystrophy in the cat // J. Am. Vet. Med. Assoc. – 1970. – Vol. 157. – 2057.
  10. Sandstrom B., Westman J., Ockerman E.A. Glycogenosis of the central nervous system in the cat // Acta Neuropathol. (Berlin). – 1969. – Vol. 14. – P. 194. Doi: 10.1007/BF00685299.
  11. Fyfe J.C., Kurzhals R.L. Glycogen storage disease type IV in Norwegian forest cats: molecular detection of carriers. In “Proceedings of the First International Feline Genetic Disease Conference,” Univ. of Pennsylvania. 1998.
  12. Baker H.J., Lindsey J.R., McKhann G.M., Farrell D.E (1971). Neuronal GM1 gangliosidosis in a Siamese cat with 3-galactosidase deficiency // Science. – 1971. – Vol. 174. – P. 838-839. doi: 10.1126/science.174.4011.838.
  13. Baker H.J., Smith B.E, Foureman P., Varadarajan, G.S., Varadarajan, U., Martin, D. R., and Castagnaro, M. The molecular bases of feline GM~ and GM2 gangliosidoses. In “Proceedings of the First International Feline Genetic Disease Conference,” Univ. of Pennsylvania. 1998.
  14. Muldoon L.L., Pagel M.A., Neuwelt E.A., Weiss D.L. Characterization of the molecular defect in a feline model for type II GM 2 gangliosidosis // Am. J. Pathol. – 1994. – Vol. 144. – P. 1109-1118.
  15. Martin D.R., Varadarajan G.S., Varadarajan U., Smith, B.E, Baker, H.J. A unique mutation of the beta subunit of hexosaminidase causes feline GM 2 gangliosidosis variant 0. Proceedings of the Tenth North American Collaquium on Gene Mapping and Cytogenetics of Domestic Species, Apalachicola, Florida. 1999.
  16. Valle, D. L., Boison, A. P., Jezyk, P., and Aguirre, G. (1981). Gyrate atrophy of the choroid and retina in a cat // Invest. Ophthalmol. Vis. Sci. – 1981. – Vol. 20. – P. 251-255.
  17. Kier A.B., Bresnahan J.E, White E.J., Wagner J.E. The inheritance pattern of factor XII (Hageman deficiency) in domestic cats // Can. J. Comp. Med. – 1980. – Vol. 44. – P. 309-314.
  18. Cotter S.M., Brenner R.M., Dodds W.J. Hemophilia A in three unrelated cats // J. Am. Vet. Med. Assoc. – 1978. – Vol. 172. – P. 166-168.
  19. Maggo-Price, L., and Dodds, W. J. Factor IX deficiency (hemophilia B) in a family of British shorthair cats // J. Am. Vet. Med. Assoc. – 1993. – Vol. 203. – P. 1702-1704.
  20. Haskins M.E., Jezyk P.E, Desnick R.J., McDonough S.K., Patterson D.F. a-L-Iduronidase deficiency in a cat: a model of mucopolysaccharidosis I. // Pediatr. Res. – 1979. – Vol. 13. – P. 1294-1297.
  21. Kittleson M.D., Meur, K.M., Kittleson A., Munro M., Si-Kwang L., Towbin J.A. Heritable characteristics, phenotypic expression, and natural history of hypertrophic cardiomyopathy in Maine coon cats. In “Proceedings of the First International Feline Genetic Disease Conference,”Univ. of Pennsylvania. 1998.
  22. Jones T.C. Sex chromosome anomaly, Klinefelter’s syndrome in tortoiseshell male cats // Comp. Pathol. Bull. – 1969. – Vol. 5.
  23. Berg T., Tollersrud O.K., Walkley S.U., Siegel D., Nilssen O. Purification of feline lysosomal tx-mannosidase, determination of its cDNA sequence, and identification of a mutation causing a-mannosidosis in Persian cats // Biochem. J. – 1997. – Vol. 328. – P. 863-870.
  24. Jezyk P.E, Haskins M.E., Patterson D.E, Mellman W.J., Greenstein M. Mucopolysaccharidosis in a cat with arylsulfatase-B deficiency: a model of Maroteaux-Lamy syndrome // Science. – 1977. – Vol. 198. – P 834-936.
  25. Hopwood J.J., Crawley A.C., Byers S., Yogalingam G., Bielicki J. Feline MPS VI as a model to study pathology and evaluate efficacy of therapy for Maroteaux-Lamy syndrome patients. In “Proceedings of the First International Feline Genetic Disease Conference,” Univ. of Pennsylvania. 1998.
  26. DiNatale P., AnneUa T., Daniele A., Spaqnuolo G., Cerundolo R., De-Capraiis D., Gravino A.E. A new case of feline MPS VI // J. Inherit. Metab. Dis. – 1992. – Vol. 15. – P. 17.
  27. Giger U., Wang P., Boyden M. Familial methemoglobin reductase deficiency in domestic shorthair cats. In “Proceedings of the First International Feline Genetic Disease Conference,” Univ. of Pennsylvania. 1998b.
  28. Haskins M.E. Lysosomal storage diseases in cats: an overview. In “Proceedings of the First International Feline Genetic Disease Conference,” Univ. of Pennsylvania. 1998.
  29. Gaschen EP. Dystrophin deficient hypertrophic feline muscular dystrophy in the cat. In “Proceedings of the First International Feline Genetic Disease Conference” Univ. of Pennsylvania. 1998.
  30. Woodard J.C., Collins G.H., Hessler, J.R. (1974). Feline hereditary neuroaxonal dystrophy // Am. J. Pathol. – 1974. – Vol. 74. – P. 551-560.
  31. Green P.D., Little P.B. Neuronal ceroid lipofuscin storage in Siamese cats // Can. J. Comp. Med. – 1974. – Vol. 38. – P. 207-212.
  32. Baker H J. Sphingomyelin lipidosis in a cat // Vet. Pathol. – 1987. – Vol. 24. – P. 386-391.
  33. Lowenthal A.C., Cummings J.F., Wenger D.A., Thrall M.A., Wood EA., de Lahunta A. Feline sphingolipidosis resembling Niemann-Pick disease type C // Acta Neuropathol. (Berlin). –1990. – Vol. 81. – P. 189.
  34. Giger U., Wang P., Boyden M. Familial methemoglobin reductase deficiency in domestic shorthair cats. In “Proceedings of the First International Feline Genetic Disease Conference,” Univ. of Pennsylvania. 1998b.
  35. DiBartola S.E, Eaton K.A., Menotti-Raymond M.A., Biller D.S., Wellman M.L. Radin M.J. Autosomal dominant polycystic kidney disease in Persian cats. In “Proceedings of the First International Feline Genetic Disease Conference,” Univ. of Pennsylvania. 1998.
  36. Glenn B.L., Glenn H.G., Omtvedt I.T. Congenital porphyria in the domestic cat: preliminary investigations on itiheritance pattern // Am. J. Vet. Res. – 1986. – Vol. 29. – P. 1653-1657.
  37. Narfstrom K. Progressive retinal atrophy in Abyssinians. In “Proceedings of the First International Feline Genetic Disease Conference,” Univ. of Pennsylvania. 1998.
  38. Bellhorn R.W., Fischer C.A. Feline central retinal degeneration // J. Am. Vet. Med. Assoc. – 1970. – Vol. 157. – P. 842-849.
  39. Bergsma D. R., and Brown, K. S. White fur, blue eyes, and deafness in the domestic cat // J. Hered. – 1971. – Vol. 62. – P. 171-185.
  40. Hoover E.A., Mullins J.I. (1991). Feline leukemia virus infection and disease // J. Am. Vet. Med. Assoc. – 1991. – Vol. 199. – P. 1287-1297.
  41. Gardner M.B., Luciw P.A. Animal models of AIDS // FASEB J. – 1998. – Vol. 3. – P. 2593-2606. doi: 10.1096/fasebj.3.14.2556312.
  42. Bendinelli M., Pistello M., Lombardi S., Poli A., Garzelli C., Matteucci D., Ceccherini-Nelli L., Malvaldi G., Tozzini F. Feline immunodeficiency virus: an interesting model for AIDS studies and an important cat pathogen // Clin Microbiol Rev. – 1995. – Vol. 8(1). – P. 87-112. doi: 10.1128/CMR.8.1.87-112.1995.
  43. Lee A., Hazell S. L., O’Rourke J., Kouprach S. (1988). Isolation of a spiral-shaped bacterium from the cat stomach // Infect. Immun. – 1988. – Vol. 56. – P. 2843-2850.
  44. Perkins S.E., Yan L.L., Shen Z., Hayward A., Murphy J.C., Fox, J.G. Use of PCR and culture to detect Helicobacter pylori in naturally infected cats following triple antimicrobial therapy // Antimicrob. Agents Chemother. – 1996. – Vol. 40. – P. 1486-1490.
  45. Fox J.G., Blanco M., Murphy J.C., Taylor N.S., Lee A., Kabok Z., Pappo J. Local and systemic immune responses in murine Helicobacterfelis active chronic gastritis // Infect. lmmun. – 1993. – Vol. 61. – P. 2309-2315.
  46. Enno A., O’Rourke J.L., Howlett C.R., Jack A., Dixon M. E, Lee A. MALToma-like lesions in the murine gastric mucosa after longterm infection with Helicobacterfelis // Am. J. Path. – 1995. – Vol. 147. – P. 217-222.
  47. Wang T.C., Dangler C.A., Chen D., Goldenring J.R., Koh T., Raychowdhury R., Coffey R.J., Ito S., Varro A., Dockray G.J., Fox, J.G. Synergistic interaction between hypergastrinemia and helicobacter infection in a mouse model of gastric cancer // Gastroenterology. – 2000. – Vol. 118. – P. 36-47. doi: 10.1016/s0016-5085(00)70412-4.
  48. Esteves M.I., Schrenzel M.D., Marini R.P., Taylor N.S., Xu S., Hagen S., Feng Y., Shen Z., Fox J.G. Helicobacter pylori Gastritis in Cats with Long-Term Natural Infection as a Model of Human Disease // American Journal of Pathology. – 2000. – Vol. 156 (2). – P. 709-721.
  49. Baker D.G., Coleridge H.M., Coleridge J.C., Nerdrum T. Search for a cardiac nociceptor: stimulation by bradykinin of sympathetic afferent nerve endings in the heart of the cat // J Physiol. – 1980. – Vol. 306. – P. 519-536.
  50. Fu L.-W., Longhurst J.C. Interactions between histamine and bradykinin in stimulation of ischaemically sensitive cardiac afferents in felines // J Physiol. – 2005. – Vol. 15 565. – P. 1007-1017.
  51. Евлахов В.И., Поясов И.З., Овсянников В.И. Механизмы взаимодействия сердечно-сосудистой и дыхательной систем // Российский физиологический журнал им. И.М. Сеченова. – 2020. – Т. 106 (№ 2). – С. 189-204 [Evlakhov V.I., Poyasov I.Z., Ovsyannikov V.I. Mekhanizmy vzaimodeistviya serdechno-sosudistoi i dykhatel’noi sistem // Rossiiskii fiziologicheskii zhurnal im. I.M. Sechenova. – 2020. – Vol. 106 (№ 2). – P. 189-204. (In Russ.)].
  52. Евлахов В.И., Овсянников В.И., Поясов И.З., Шайдаков Е.В. Регуляция легочного кровообращения в норме и при экспериментальной патологии // Медицинский академический журнал. – 2013. – Т. 13 (№ 4). – С. 54-65 [Evlakhov V.I., Ovsyannikov V.I., Poyasov I.Z., Shaidakov E.V. Regulyatsiya legochnogo krovoobrashcheniya v norme i pri eksperimental’noi patologii // Meditsinskii akademicheskii zhurnal. – 2013. – Vol. 13 (№ 4). – P. 54-65. (In Russ.)].
  53. Евлахов В.И., Поясов И.З. Гемодинамические механизмы изменений давления и кровотока в легочной артерии при применении депрессорных вазоактивных веществ. Российский физиологический журнал им. И.М. Сеченова. – 2011. – Т. (№ 1). – C. 24-34. [Evlakhov V.I., Poyasov I.Z. Gemodinamicheskie mekhanizmy izmenenii davleniya i krovotoka v legochnoi arterii pri primenenii depressornykh vazoaktivnykh veshchestv. Rossiiskii fiziologicheskii zhurnal im. I.M. Sechenova. – 2011. – Vol. 97 (№ 1). – P. 24-34. (In Russ.)].
  54. Owen D.A. The effects of histamine and some histamine-like agonists on blood pressure in the cat // Br J Pharmacol. – 1975. – Vol. 55(2). – P. 173-179. doi: 10.1111/j.1476-5381.1975.tb07626.x.
  55. Tucker A., Hoffman E.A., Reeves J.T. Vascular actions of histamine H1- and H2-receptor agonists in dogs and cats // Eur J Pharmacol. – 1977. – Vol. 1(45). – P. 73-77. doi: 10.1111/j.1476-5381.1997.tb06827.x.
  56. Black J.W., Owen D.A., Parsons M.E. An analysis of the depressor responses to histamine in the cat and dog: involvement of both H1- and H2-receptors. 1975 // Br J Pharmacol. – 1997. – Vol. 120. – P. 420-425. doi: 10.1111/j.1476-5381.1997.tb06827.x.
  57. Liu S.K., Tilley L.P. Animal models of primary myocardial diseases // Yale J Biol Med. – 1980. – Vol. 53(3). – P. 191-211.
  58. Payne J.R., Brodbelt D.C., Luis Fuentes V. Cardiomyopathy prevalence in 780 apparently healthy cats in rehoming centres (the CatScan study) // J Vet Cardiol. – 2015. – Vol. 17. – P. S244–257. doi: 10.1016/j.jvc.2015.03.008.
  59. Kittleson M.D., Meurs K.M., Munro M.J., Kittleson J.A., Liu S.K., Pion P.D., Towbin J.A. Familial hypertrophic cardiomyopathy in maine coon cats: an animal model of human disease // Circulation. – 1999. – Vol. 99(24). – P. 3172-3180. doi: 10.1161/01.cir.99.24.3172.
  60. Fox PR. Hypertrophic cardiomyopathy. Clinical and pathologic correlates // J Vet Cardiol. – 2003. – Vol. 5(2). – P. 39-45.
  61. Freeman L.M., Rush J.E. Nutrition and cardiomyopathy: lessons from spontaneous animal models // Curr Heart Fail Rep. – 2007. – Vol. 4. – P. 84-90. doi: 10.1007/s11897-007-0005-6.
  62. Freeman L.M., Rush J.E., Stern J.A., Huggins G.S., Maron M.S. Feline Hypertrophic Cardiomyopathy: A Spontaneous Large Animal Model of Human HCM // Cardiol Res. – 2017. – Vol. 8(4). – P. 139-142. doi: 10.14740/cr578w.
  63. Mary J., Chetboul V., Sampedrano C.C., Abitbol M., Gouni V., Trehiou-Sechi E., Tissier R., Queney G., Pouchelon J.L., Thomas A. Prevalence of the MYBPC3-A31P mutation in a large European feline population and association with hypertrophic cardiomyopathy in the Maine Coon breed // J Vet Cardiol. – 2010. – Vol. 12. – P. 155-161. doi: 10.1016/j.jvc.2010.06.004.
  64. Camacho P., Fan H., Liu Z., He J-Q. Small mammalian animal models of heart disease // Am J Cardiovas Dis. – 2016. – Vol. 6(3). – P. 70-80.
  65. Tilley L.P., Liu S.K., Gilbertson S.R., Wagner B.M., Lord P.F. Primary myocardial disease in the cat. A model for human cardiomyopathy // Am J Pathol. – 1977. – Vol. 86(3). – P. 493-522.
  66. Courcier E.A., O’Higgins R., Mellor D.J., Yam P.S. Prevalence and risk factors for feline obesity in a first opinion practice in Glasgow, Scotland // J Feline Med Surg. – 2010. – Vol. 12(10). – P. 746-753. doi: 10.1016/j.jfms.2010.05.011.
  67. Scarlett J.M., Donoghue S. Associations between body condition and disease in cats // J Am Vet Med Assoc. – 1998. – Vol. 212(11). – P. 1725-1731.
  68. Laflamme D. Development and validation of a body condition score system for cats: a clinical tool // Feline Pract. – 1997. – Vol. 25(5-6). – P. 13-18.
  69. Nelson R.W., Himsel C.A., Feldman E.C., Bottoms G.D. Glucose tolerance and insulin response in normal-weight and obese cats // Am J Vet Res. – 1990. – Vol. 51(9). – P. 1357-1362.
  70. Hawthorne A., Butterwick R. Predicting the body composition of cats: development of a zoometric measurement for estimation of percentage body fat in cats // J Vet Intern Med. – 2000. – Vol. 14(3). – P 365.
  71. Hoenig M., Pach N., Thomaseth K., de Vries F., Ferguson D.C. Evaluation of long-term glucose homeostasis in lean and obese cats using continuous glucose monitoring // Am J Vet Res. – 2012a. – Vol. 73(7). – P. 1100-1106. doi: 10.2460/ajvr.73.7.1100.
  72. Hoenig M., Thomaseth K., Brandao J., Waldron M., Ferguson D.C. Assessment and mathematical modeling of glucose turnover and insulin sensitivity in lean and obese cats // Domest Anim Endocrinol. – 2006b. – Vol. 31(4). – P. 373-389. doi: 10.1016/j.domaniend.2005.12.004.
  73. Wagenknecht L.E., Langefeld C.D., Scherzinger A.L., Norris J.M., Haffner S.M., Saad M.F, Bergman R.N. Insulin sensitivity, insulin secretion, and abdominal fat: the Insulin Resistance Atherosclerosis Study (IRAS) Family Study // Diabetes. – 2003. – Vol. 52(10). – P. 2490-2496.
  74. Schrauwen-Hinderling V.B., Hesselink M.K., Schrauwen P., Kooi M.E. Intramyocellular lipid content in human skeletal muscle // Obesity (Silver Spring). – 2006. – Vol. 14(3). – P. 357-367. doi: 10.1038/oby.2006.47.
  75. Porat O. The effect of tumor necrosis factor alpha on the activity of lipoprotein lipase in adipose tissue // Lymphokine Res. – 1989. – Vol. 8(4). – P. 459-469.
  76. Kern P.A., Saghizadeh M., Ong J.M., Bosch R.J., Deem R., Simsolo R.B. The expression of tumor necrosis factor in human adipose tissue. regulation by obesity, weight loss, and relationship to lipoprotein lipase // J Clin Invest. – 1995. – Vol. 95(5). – P. 2111-2119. doi: 10.1172/JCI117899.
  77. Hoenig M., Thomaseth K., Waldron M., Ferguson D.C. Insulin sensitivity, fat distribution, and adipocytokine response to different diets in lean and obese cats before and after weight loss // Am J Physiol Regul Integr Comp Physiol. – 2007b. – Vol. 292(1). – P. R227–234.
  78. Hoenig M., Ferguson D.C. Effect of darglitazone on glucose clearance and lipid metabolism in obese cats // Am J Vet Res. – 2003. – Vol. 64(11). – P. 1409-1413.
  79. Kley S., Hoenig M., Glushka J., Jin E.S., Burgess S.C., Waldron M., Jordan E.T., Prestegard J.H., Ferguson D.C., Wu S., Olson D.E. The impact of obesity, sex, and diet on hepatic glucose production in cats // Am J Physiol Regul Integr Comp Physiol. – 2009. – Vol. 296(4). – P. R936-943
  80. Hoenig M., Jordan E.T., Glushka J., Kley S., Patil A., Waldron M., Prestegard J.H., Ferguson D.C., Wu S., Olson D.E. Effect of macro-nutrients, age, and obesity on 6 and 24-hour post-prandial glucose metabolism in cats // Am J Physiol Regul Integr Comp Physiol. – 2011. – Vol. 301(6). – P. R1798-807.
  81. Kettelhut I.C., Foss M.C., Migliorini R.H. Glucose homeostasis in a carnivorous animal (cat) and in rats fed a high-protein die // Am J Physiol. – 1980. – Vol. 239(5). – P. R437–444.
  82. Ballard F.J. Glucose utilization in mammalian liver // Comp Biochem Physiol. – 1965. – Vol. 14. – P. 437-443.
  83. Engelking L.R. Textbook of veterinary physiological chemistry. 2nd ed. Burlington: Academic Press. 2011.
  84. Rothman D.L., Magnusson I., Katz L.D., Shulman R.G., Shulman G.I. Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with 13C NMR // Science. – 1991. – Vol. 254(5031). – P. 573-576.
  85. Gal A., Hoenig M., O’Brien T.D., Wallig M., Singh K. Histopathology from life-long dietary-induced obese cats and lean controls // Vet Pathol. – 2010. – Vol. 47(6S). – P. 150. (abstract).
  86. Ma Z., Westermark G.T., Johnson K.H., O’Brien T.D., Westermark P. Quantitative immunohistochemical analysis of islet amyloid polypeptide (IAPP) in normal, impaired glucose tolerant, and diabetic cats // Amyloid. – 1998. –Vol 5(4). – P. 255-261.
  87. Nelson R.W., Griffey S.M., Feldman E.C., Ford S.L. Transient clinical diabetes mellitus in cats: 10 cases (1989-1991) // J Vet Intern Med. – 1999. – Vol. 13(1). – P. 28-35.
  88. Hoenig M, Alexander S, Holson J, Ferguson DC. Influence of glucose dosage on interpretation of intravenous glucose tolerance tests in lean and obese cats // J Vet Intern Med. – 2002. – Vol. 16(5). – P. 529-532.
  89. Brennan CL, Hoenig M, Ferguson DC. GLUT4 but not GLUT1 expression decreases early in the development of feline obesity // Domest Anim Endocrinol. –2004. – Vol. 26(4). – P. 291-301.
  90. Appleton D.J., Rand J.S., Priest J., Sunvold G.D. Determination of reference values for glucose tolerance, insulin tolerance, and insulin sensitivity tests in clinically normal cats // Am J Vet Res. – 2001. – Vol. 62(4). – P. 630-636.
  91. Backus R.C., Cave N.J., Ganjam V.K., Turner J.B., Biourge V.C. Age and body weight effects on glucose and insulin tolerance in colony cats maintained since weaning on high dietary carbohydrate // J Anim Physiol Anim Nutr (Berl). – 2010. – Vol. 94(6). – P. e318-28.
  92. Biourge V., Nelson R.W., Feldman E.C., Willits N.H., Morris J.G., Rogers Q.R. Effect of weight gain and subsequent weight loss on glucose tolerance and insulin response in healthy cats // J Vet Intern Med. – 1997. – Vol. 11(2). – P. 86-91.
  93. Schindler C. The metabolic syndrome as an endocrine disease: is there an effective pharmacotherapeutic strategy optimally targeting the pathogenesis? // Ther Adv Cardiovasc Dis. – 2007. – Vol. 1(1). – P. 17-26. doi: 10.1177/1753944707082662.
  94. Freedman D.S., Otvos J.D., Jeyarajah E.J., Barboriak J.J., Anderson A.J. Walker J.A. Relation of lipoprotein subclasses as measured by proton nuclear magnetic resonance spectroscopy to coronary artery disease // Arterioscler Thromb Vasc Biol. – 1998. – Vol. 18(7). – P. 1046-1053. doi: 10.1161/01.atv.18.7.1046.
  95. Goff D.C., Jr, D’Agostino R.B., Jr, Haffner S.M., Otvos J.D. Insulin resistance and adiposity influence lipoprotein size and subclass concentrations. results from the insulin resistance atherosclerosis study // Metabolism. – 2005. – Vol 54(2). – P. 264-270. doi: 10.1016/j.metabol.2004.09.002.
  96. Griffin BA. Lipoprotein atherogenicity: an overview of current mechanisms // Proc Nutr Soc. – 1999. – Vol. 58(1). – P. 163-169.
  97. Liu S.K., Tilley L.P. Animal models of primary myocardial diseases // Yale J Biol Med. – 1980. – Vol. 53(3). – P. 191-211.
  98. Hoenig M., Caffall Z., Ferguson D.C. Triiodothyronine differentially regulates key metabolic factors in lean and obese cats // Domest Anim Endocrinol. – 2008. – Vol. 34(3) . – P. 229-237
  99. Hoenig M., Thomaseth K., Waldron M., Ferguson D.C. Fatty acid turnover, substrate oxidation, and heat production in lean and obese cats during the euglycemic hyperinsulinemic clamp // Domest Anim Endocrinol. – 2007a. – Vol. 32(4). – P. 329-338.
  100. Ahima R.S., Flier J.S. Leptin // Annu Rev Physiol. – 2000. – Vol 62. – P. 413-437.
  101. Backus R.C., Havel P.J., Gingerich R.L., Rogers Q.R. Relationship between serum leptin immunoreactivity and body fat mass as estimated by use of a novel gas-phase Fourier transform infrared spectroscopy deuterium dilution method in cats // Am J Vet Res. – 2000. – Vol. 61(7). – P. 796-801.
  102. Giraudel J.M., Diquelou A., Laroute V., Lees P., Toutain P-L. Pharmacokinetic/pharmacodynamic modelling of NSAIDs in a model of reversible inflammation in the cat // British Journal of Pharmacology. – 2005c. – Vol. 146. – P. 642-653.
  103. Giraudel J.M., Toutain P.L., Lees P. Development of in vitro assays for the evaluation of cyclooxygenase inhibitors and application for predicting the selectivity of NSAIDs in the cat // Am. J. Vet. Res. – 2005b. – Vol. 66. – P. 700-709.
  104. Botrel M.A., Haak T., Legrand C., Concordet D., Chevalier R., Toutain P.L. Quantitative evaluation of an experimental inflammation induced with Freund’s complete adjuvant in dogs // J. Pharmacol. Toxicol. Methods. – 1994. – Vol. 32. – P. 63-71.
  105. Toutain P.L., Autefage A., Legrand C., Alvinerie M. Plasma concentrations and therapeutic efficacy of phenylbutazone and flunixin meglumine in the horse: pharmacokinetic/pharmacodynamic modeling // J. Vet. Pharmacol. Ther. – 1994. – Vol. 17. – P. 459-469.
  106. Toutain P.L., Cester C.C., Haak T., Laroute V.A pharmacokinetic/pharmacodynamic approach vs a dose titration for the determination of a dosage regimen: the case of nimesulide, a Cox-2 selective nonsteroidal anti-inflammatory drug in the dog // J. Vet. Pharmacol. Ther. – 2001. – Vol. 24. – P. 43-55.
  107. Giraudel J.M., Diquelou A., Lees P., Toutain P.L. Development and validation of a new model of inflammation in the cat and selection of surrogate endpoints for testing anti-inflammatory drugs // J. Vet. Pharmacol. Ther. – 2005a. – Vol. 28. – P. 275-285.
  108. Walker J.S. Pharmacokinetic–pharmacodynamic correlations of analgesics Handbook of Pharmacokinetic/Pharmacodynamic Correlation 1995 U.S.A.: CRC Press LLC. 157-168. ed. Derendorf, H., Hochhaus, G.
  109. Engelhardt G. Pharmacology of meloxicam, a new non-steroidal anti-inflammatory drug with an improved safety profile through preferential inhibition of COX-2. // Br. J. Rheumatol. – 1996. – Vol. 35. – P. 4-12.
  110. Turck D., Roth W., Busch U. A review of the clinical pharmacokinetics of meloxicam // Br. J. Rheumatol. – 1996. – Vol. 35. – P. 13-16.
  111. Busch U., Schmid J., Heinzel G., Schmaus H., Baierl J., Huber C., Roth W. Pharmacokinetics of meloxicam in animals and the relevance to humans // Drug Metab. Dispos. – 1998. – Vol. 26. – P. 576-584.
  112. Slingsby L.S., Waterman-Pearson A.E. Postoperative analgesia in the cat after ovariohysterectomy by use of carprofen, ketoprofen, meloxicam or tolfenamic acid // J. Small Anim. Pract. – 2000. – Vol. 41. – P. 447-450.
  113. Lascelles B.D., Henderson A.J., Hackett I.J. Evaluation of the clinical efficacy of meloxicam in cats with painful locomotor disorders // J. Small Anim. Pract. – 2001. – Vol. 42. – P. 587-593.
  114. Thomas R. Cytogenomics of feline cancers: advances and opportunities // Vet Sci. – 2015. – Vol. 2. – P. 246-258.
  115. Mwangi W., de Figueiredo P., Criscitiello M.F. One Health: Addressing Global Challenges at the Nexus of Human, Animal, and Environmental Health // PLOS Pathogens. – 2016. – Vol. 12(9). – P. e1005731. doi: 10.1371/journal.ppat.1005731.
  116. Yuhki N, Beck T, Stephens R, Neelam B, O’Brien SJ. Comparative genomic structure of human, dog, and cat MHC: HLA, DLA, and FLA // J Hered. – 2007. – Vol. 98. – P. 390-399.
  117. Khanna C., Lindblad-Toh K., Vail D. The dog as a cancer model // Nat Biotechnol. – 2006. – Vol. 24(9). – P. 1065-1066.
  118. Paoloni M., Khanna C. Translation of new cancer treatments from pet dogs to humans // Nat Rev Cancer. – 2008. – Vol. 8(2). – P. 147-156.
  119. Simmons J.K., Hildreth B.E., Supsavhad W., Elshafae S.M., Hassan B.B., Dirksen W. P., Toribio R. E., Rosol T. J. Animal Models of Bone Metastasis // Vet Pathol. – 2015. – Vol. 52(5). – P. 827-841.
  120. Langlais L.M., Gibson J., Taylor J.A., Caswell J.L Pulmonary adenocarcinoma with metastasis to skeletal muscle in a cat // Can Vet J. – 2006. – Vol. 47(11). – P. 1122-1123.
  121. Ballegeer E.A., Madrill N.J., Berger K.L., Agnew D.W., McNiel E.A.. Evaluation of hypoxia in a feline model of head and neck cancer using (6)(4)Cu-ATSM positron emission tomography/computed tomography // BMC Cancer. – 2013. – Vol. 13 (128). – P. 1-11. doi: 10.1186/1471-2407-13-218.
  122. MacEwen E.G. Spontaneous tumors in dogs and cats: models for the study of cancer biology and treatment // Cancer Metastasis Rev. – 1990. – Vol. 9(2). – P. 125-136.
  123. Tannehill-Gregg S.H., Levine A.L., Rosol T.J. Feline head and neck squamous cell carcinoma: a natural model for the human disease and development of a mouse model // Vet Comp Oncol. – 2006. – Vol. 4(2). – P. 84–97.
  124. Tannehill-Gregg S.H., Kergosien E., Rosol T.J. Feline head and neck squamous cell carcinoma cell line: characterization, production of parathyroid hormone–related protein, and regulation by transforming growth factor–beta // In Vitro Cell Dev Biol Anim. – 2001. – Vol. 37(10). – P. 676-683.
  125. Martin C.K., Dirksen W.P., Shu S.T., Werbeck J.L, Thudi N.K., Yamaguchi M., Wolfe T.D., Heller K.N., Rosol T.J. Characterization of bone resorption in novel in vitro and in vivo models of oral squamous cell carcinoma // Oral Oncol. – 2012. – Vol. 48(6). – P. 491-499.
  126. Soltero-Rivera MM, Krick EL, Reiter AM, Werbeck J.L, Thudi N.K., Yamaguchi M., Wolfe T.D., Heller K.N., Rosol T.J. Prevalence of regional and distant metastasis in cats with advanced oral squamous cell carcinoma: 49 cases (2005–2011) // J Feline Med Surg. – 2014. – Vol. 16(2). – P. 164-169.
  127. Gardner D.G. Spontaneous squamous cell carcinomas of the oral region in domestic animals: a review and consideration of their relevance to human research // Oral Dis. – 1996. – Vol. 2(2). – P. 148-154.
  128. Jimi E., Shin M., Furuta H., Tada Y., Kusukawa J. The RANKL/RANK system as a therapeutic target for bone invasion by oral squamous cell carcinoma // Int J Oncol. – 2013. – Vol. 42(3). – P. 803-809.
  129. Wypij J.M. A naturally occurring feline model of head and neck squamous cell carcinoma // Pathol Res Int. – 2013. – Vol. 2013. – P. 1-7. doi:10.1155/2013/502197.
  130. Bergkvist G.T., Argyle D.J., Pang L.Y., Muirhead R., Yool D.A. Studies on the inhibition of feline EGFR in squamous cell carcinoma: enhancement of radiosensitivity and rescue of resistance to small molecule inhibitors // Cancer Biol Ther. – 2011. – Vol. 11(11). – P. 927-937.
  131. Rathore K., Alexander M., Cekanova M. Piroxicam inhibits masitinib-induced cyclooxygenase 2 expression in oral squamous cell carcinoma cells in vitro // Transl Res. – 2014. – Vol. 164(2). – P. 158-168.
  132. Zygogianni A.G., Kyrgias G., Karakitsos P., Psyrri A., Kouvaris J., Kelekis N., Kouloulias V. Oral squamous cell cancer: early detection and the role of alcohol and smoking // Head Neck Oncol. – 2011. – Vol. 3(2). – P. 1-12.
  133. Bertone E.R., Snyder L.A., Moore A.S. Environmental and lifestyle risk factors for oral squamous cell carcinoma in domestic cats // J Vet Intern Med. – 2003. – Vol. 17(4). – P. 557-562.
  134. Snyder L.A., Bertone E.R., Jakowski R.M., Dooner M.S., Jennings-Ritchie J., Moore A.S p53 expression and environmental tobacco smoke exposure in feline oral squamous cell carcinoma // Vet Pathol. – 2004. – Vol. 41(3). – P. 209-214.
  135. Martin C.K., Tannehill-Gregg S.H., Wolfe T.D., Rosol T.J. Bone-invasive oral squamous cell carcinoma in cats: pathology and expression of parathyroid hormone–related protein // Vet Pathol. – 2011. – Vol. 48(1). – P. 302-312.
  136. Twomey L.N., Compendium A.A. Cytodiagnosis of feline lymphoma // Compendium. – 2005. – Vol. 27 (1).
  137. Richter K.P. Feline gastrointestinal lymphoma // Vet Clin North Am Small Anim Pract. – 2003. – Vol. 33. – P. 1083-1098.
  138. Ettinger S.N. Principles of treatment for feline lymphoma // Clin Tech Small Anim Pract. – 2003. – Vol. 18. – P. 98-102.
  139. Gabor L.J., Malik R., Canfield P.J. Clinical and anatomical features of lymphosarcoma in 118 cats // Aust Vet J. – 1998. – Vol. 76. – P. 725-732.
  140. Vail D.M., Moore A.S., Ogilvie G.K., Volk L.M. Feline lymphoma (145 cases): proliferation indices, cluster of differentiation 3 immunoreactivity, and their association with prognosis in 90 cats // J Vet Intern Med. – 1998. – Vol. 12. – P. 349-354.
  141. Moore P.F., Rodriguez-Bertos A., Kass P.H. Feline gastrointestinal lymphoma: mucosal architecture, immunophenotype, and molecular clonality // Vet Pathol. – 2011. – Vol. 49. – P. 658-668.
  142. Guillermo C.C. What is new on feline lymphoma? // J Feline Med Surg. – 2001. – Vol. 3. – P. 171-176.
  143. Barrs V., Beatty J. Feline alimentary lymphoma: 1. Classification, risk factors, clinical signs and non-invasive diagnostics // J Feline Med Surg. – 2012. – Vol. 14. – P. 182-190.
  144. Paulin M.V., Couronné L., Beguin J., Le Poder S. et al. Feline low-grade alimentary lymphoma: an emerging entity and a potential animal model for human disease // BMC Veterinary Research (2018) 14:306
  145. Willard M.D. Alimentary neoplasia in geriatric dogs and cats // Vet Clin North Am Small Anim Pract. – 2012. – Vol. 42. – P. 693-706.
  146. Louwerens M., London C.A., Pedersen N.C., Lyons L.A. Feline lymphoma in the post-feline leukemia virus era // J Vet Intern Med. – 2005. – Vol. 19. – P. 329-335.
  147. Fujino Y., Liao C.-P., Zhao Y.S., Pan J., Mathes L.E., Hayes K.A., et al. Identification of a novel common proviral integration site, flit-1, in feline leukemia virus induced thymic lymphoma // Virology. – 2009. – Vol. 386. – P. 16-22.
  148. Nesina S., Katrin Helfer-Hungerbuehler A., Riond B., Boretti F.S., Willi B., Meli ML., et al. Retroviral DNA-the silent winner: blood transfusion containing latent feline leukemia provirus causes infection and disease in naïve recipient cats // Retrovirology. – 2015. – Vol. 12. – P. 105.
  149. Sato H., Fujino Y., Chino J., Takahashi M., Fukushima K., Goto-Koshino Y., et al. Prognostic analyses on anatomical and morphological classification of feline lymphoma // J Vet Med Sci. – 2014. – Vol. 76. – P. 807-811.
  150. Tsatsanis C., Fulton R., Nishigaki K., Tsujimoto H., Levy L., Terry A., et al. Genetic determinants of feline leukemia virus-induced lymphoid tumors: patterns of proviral insertion and gene rearrangement // J Virol. – 1994. – Vol. 68. – P. 8296-8303.
  151. Jackson M.L., Wood S.L., Misra V., Haines D.M. Immunohistochemical identification of B and T lymphocytes in formalin-fixed, paraffin-embedded feline lymphosarcomas: relation to feline leukemia virus status, tumor site, and patient age // Can J Vet Res. – 1996. – Vol. 60. – P. 199-204.
  152. Callanan J.J., Jones B.A., Irvine J., Willett B.J., McCandlish I.A., Jarrett O. Histologic classification and immunophenotype of lymphosarcomas in cats with naturally and experimentally acquired feline immunodeficiency virus infections // Vet Pathol. – 1996. – Vol. 33. – P. 264–272.
  153. Mikkers H., Berns A. Retroviral insertional mutagenesis: tagging cancer pathways // Adv Cancer Res. – 2003. – Vol. 88. – P. 53-99.
  154. Beatty J.A., Lawrence C.E., Callanan J.J., Grant C.K., Gault E.A., Neil J.C., et al. Feline immunodeficiency virus (FIV)-associated lymphoma: a potential role for immune dysfunction in tumourigenesis // Vet Immunol Immunopathol. – 1998. – Vol. 65. – P. 309-322.
  155. Lutz H., Pedersen N.C., Theilen G.H. Course of feline leukemia virus infection and its detection by enzymelinked immunosorbent assay and monoclonal antibodies // Am J Vet Res. – 1983. – Vol. 44. – P. 2054-2059.
  156. Court E.A., Watson A.D., Peaston AE. Retrospective study of 60 cases of feline lymphosarcoma // Aust Vet J. – 1997. – Vol. 75. – P. 424-427.
  157. Kaye S., Wang W., Miller C., McLuckie A., Beatty J.A., Grant C.K., et al. Role of feline immunodeficiency virus in lymphomagenesis going alone or colluding? // ILAR J. – 2016. – Vol. 57. – P. 24-33.
  158. Farinha P., Gascoyne R.D. Helicobacter pylori and MALT lymphoma // Gastroenterology. – 2005. – Vol. 128. – P. 1579-1605.
  159. Wang F., Meng W., Wang B., Qiao L. Helicobacter pylori-induced gastric inflammation and gastric cancer // Cancer Lett. – 2014. – Vol. 345. – P. 196-202.
  160. Bridgeford E.C., Marini R.P., Feng Y., Parry N.M.A., Rickman B., Fox J.G. Gastric helicobacter species as a cause of feline gastric lymphoma: a viable hypothesis // Vet Immunol Immunopathol. – 2008. – Vol. 123. – P. 106-113.
  161. Hoehne S.N., McDonough S.P., Rishniw M., Simpson K.W. Identification of mucosa-invading and intravascular Bacteria in feline small intestinal lymphoma // Vet Pathol. – 2017. – Vol. 54. – P. 234-241.
  162. Moore P.F., Woo J.C., Vernau W., Kosten S., Graham P.S. Characterization of feline T cell receptor gamma (TCRG) variable region genes for the molecular diagnosis of feline intestinal T cell lymphoma // Vet Immunol Immunopathol. – 2005. – Vol. 106. – P. 167-178.
  163. Briscoe K.A., Krockenberger M., Beatty J.A., Crowley A., Dennis M.M., Canfield P.J., et al. Histopathological and immunohistochemical evaluation of 53 cases of feline lymphoplasmacytic enteritis and low-grade alimentary lymphoma // J Comp Pathol. – 2011. – Vol. 145. – P. 187-198.
  164. Lingard A.E., Briscoe K., Beatty J.A., Moore A.S., Crowley A.M., Krockenberger M., et al. Low-grade alimentary lymphoma: clinicopathological findings and response to treatment in 17 cases // J Feline Med Surg. – 2009. – Vol. 11. – P. 692-700.
  165. Carreras J.K., Goldschmidt M., Lamb M., McLear R.C., Drobatz K.J., Sorenmo K.U. Feline epitheliotropic intestinal malignant lymphoma: 10 cases (1997-2000) // J Vet Intern Med. – 2003. – Vol. 17. – P. 326-331.
  166. Kiupel M., Smedley R.C., Pfent C., Xie Y., Xue Y., Wise A.G., et al. Diagnostic algorithm to differentiate lymphoma from inflammation in feline small intestinal biopsy samples // Vet Pathol. – 2011. – Vol. 48. – P. 212-222.
  167. Chott A, Dragosics B, Radaszkiewicz T. Peripheral T-cell lymphomas of the intestine // Am J Pathol. – 1992. – Vol. 141. – P. 1361-1371.
  168. Dieter R.S., Duque K. Enterotherapy associated T-cell lymphoma: a case report and literature review // WMJ. – 2000. – Vol. 99. – P. 28-31.
  169. ondacaro J.V., Richter K.P., Carpenter J.L., Hart J.R., Hill S.L., Fettman M.J. Feline gastrointestinal lymphoma: 67 cases (1988–1996) // Eur J Comp Gastroenterol. – 1999. – Vol. 4. – P. 5-11.
  170. FCastro-López J., Teles M., Fierro C., Allenspach K., Planellas M., Pastor J. Pilot study: duodenal MDR1 and COX2 gene expression in cats with inflammatory bowel disease and low-grade alimentary lymphoma // J Feline Med Surg. – 2017. – Vol. 207. – P. 214.
  171. Ohsawa M., Fukushima H., Ikura Y., Inoue T., Shirai N., Sugama Y, et al. Expression of cyclooxygenase-2 in Hodgkin’s lymphoma: its role in cell proliferation and angiogenesis // Leuk Lymphoma. – 2006. – Vol. 47. – P. 1863-1871.
  172. Panwala C.M., Jones J.C., Viney J.L. A novel model of inflammatory bowel disease: mice deficient for the multiple drug resistance gene, mdr1a, spontaneously develop colitis // J Immunol. – 1998. – Vol. 161. – P. 5733-5744.
  173. Daiger S.P., Rossiter B.J.F., Greenberg J., Christoffels A., Hide W.Data services and software for identifying genes and mutations causing retinal degeneration // Invest Ophthalmol Vis Sci. – 1998. – Vol. 39. – P. S295.
  174. Hull S., Arno G., Plagnol V., Chamney S., Russell-Eggitt I., Thompson D., Ramsden S.C., Black G.C.M, Robson A., Holder G.E., Moore A.T., Webster A.R. The phenotypic variability of retinal dystrophies associated with mutations in CRX, with report of a novel macular dystrophy phenotype // Invest Ophthalmol Vis Sci. – 2014. – Vol. 55. – P. 6934-6944. doi: 10.1167/iovs.14-14715.
  175. Occelli L.M., Tran N.M., Narfstr¨om K., Chen S., Petersen-Jones S.M. CrxRdy cat: a large animal model for CRX-associated Leber congenital amaurosis // Invest Ophthalmol Vis Sci. – 2016. – Vol. 57. – P. 3780-3792.
  176. Jeon C.J., Strettoi E., Masland R.H.The major cell populations of the mouse retina // J Neurosci. – 1998. – Vol. 18. – P. 8936-8946.
  177. Applebury M.L., Antoch M.P., Baxter L.C., Chun L.L., Falk J.D., Farhangfar F., Kage K., Krzystolik M.G., Lyass L.A., Robbins J.T. The murine cone photoreceptor: a single cone type expresses both S and M opsins with retinal spatial patterning // Neuron. – 2000. – Vol. 27. – P. 513-523. doi: 10.1016/s0896-6273(00)00062-3.
  178. Provis J.M., Dubis A.M., Maddess T., Carroll J. Adaptation of the central retina for high acuity vision: cones the fovea and the avascular zone // Prog Retin Eye Res. – 2013. – Vol. 35. – P. 63-81.
  179. Rossi E.A., Roorda A. The relationship between visual resolution and cone spacing in the human fovea // Nat Neurosci. – 2010. – Vol. 13. – P. 156-157.
  180. Volland S., Esteve-Rudd J., Hoo J., Yee C., Williams D.S. A comparison of some organizational characteristics of the mouse central retina and the human macula // PLoS One. – 2015. – Vol. 10. – P. 1-13. doi: 10.1371/journal.pone.0125631.
  181. Barnett K.C., Curtis R. Autosomal dominant progressive retinal atrophy in the Abyssinian cat // J Hered. – 1985. – Vol. 76. – P. 168-170.
  182. Curtis R., Barnett K.C., Leon A. An early-onset retinal dystrophy with dominant inheritance in the Abyssinian cat. Clinical and pathological findings // Invest Ophthalmol Vis Sci. – 1987. – Vol. 28. – P. 131-139.
  183. Leon A, Curtis R. Autosomal dominant rod-cone dysplasia in the Rdy cat. 1. Light and electron microscopic findings // Exp Eye Res. – 1990. – Vol. 51. – P. 361-381.
  184. Leon A., Hussain A.A., Curtis R. Autosomal dominant rod-cone dysplasia in the Rdy cat. 2. Electrophysiological findings // Exp Eye Res. – 1991. – Vol. 53. – P. 489-502.
  185. Chong N.H., Alexander R.A., Barnett K.C., Bird A.C., Luthert P.J. An immunohistochemical study of an autosomal dominant feline rod/cone dysplasia (Rdy cats) // Exp Eye Res. – 1999. – Vol. 68. – P. 51-57.
  186. Menotti-Raymond M., Deckman K.H., David V., Myrkalo J., O’Brien S.J., Narfstrom K. Mutation discovered in a feline model of human congenital retinal blinding disease // Invest Ophthalmol Vis Sci. – 2010. – Vol. 51. – P. 2852-2859.
  187. Steinberg R.H., Reid M., Lacy P.L.The distribution of rods and cones in the retina of the cat (Felis domesticus) // J Comp Neurol. – 1973. – Vol. 148. – P. 229-248.
  188. Rapaport D.H., Stone J. The area centralis of the retina in the cat and other mammals: focal point for function and development of the visual system // Neuroscience. – 1984. – Vol 11. – P. 289-301.
  189. Linberg K.A., Lewis G.P., Shaaw C., Rex T.S., Fisher SK. Distribution of S- and M-cones in normal and experimentally detached cat retina // J Comp Neurol. – 2001. – Vol 430. – P. 343-356.
  190. Creel D., Hendrickson A.E., Leventhal A.G. Retinal projections in tyrosinase-negative albino cats // J Neurosci. – 1982. – Vol. 2(7). – P. 907-11.
  191. Clark F.J., von Euler C. On the regulation of depth and rate of breathing // J Physiol. – 1972. – Vol. 222(2). – P. 267-295
  192. Rosenberg H.F., Druey K.M. Modeling asthma: Pitfalls, promises, and the road ahead // J Leukoc Biol. – 2018. – Vol. 104(1). – P. 41-48.
  193. Farnworth M.J., Chen R., Packer R.M.A., Caney S.M.A., Gunn-Moore D.A. Flat Feline Faces: Is Brachycephaly Associated with Respiratory Abnormalities in the Domestic Cat (Felis catus)? // PLoS One. – 2016. – Vol. 30; 11(8). – P. 1-12. doi: 10.1371/journal.pone.0161777
  194. Lulich K.M., Mitchell H.W., Sparrow M.P. The cat lung strip as an in vitro preparation of peripheral airways: a comparison of beta-adrenoceptor agonists, autacoids and anaphylactic challenge on the lung strip and trachea // Br J Pharmacol. – 1976. – Vol. 58(1). – P. 71-79.
  195. Chand N., Eyre P. Autacoid and anaphylactic reactivity of pulmonary and hepatic smooth musculature of the cat // Eur J Pharmacol. – 1977. – Vol. 1 (45.3). – P. 213-20.
  196. Carter M.C., Smith J.L. Simultaneous control of two rhythmical behaviors. I. Locomotion with paw-shake response in normal cat // J Neurophysiol. – 1986. – Vol. 56(1). – P. 171-183.
  197. Sandstrom, B., Westman, J., and Ockerman, E A. Glycogenosis of the central nervous system in the cat // Acta Neuropathol. – 1969. – Vol. 14. – P. 194.
  198. Hodson-Tole EF, Pantall A, Maas H, Farrell B, Gregor RJ, Prilutsky BITask-dependent activity of motor unit populations in feline ankle extensor muscles.//J Exp Biol. – 2012. – Vol. 1(215). – P. 3711-3722.
  199. Ianuzzi A., Pickar J.G., Khalsa P.S. Validation of the Cat as a Model for the Human Lumbar Spine During Simulated High-Velocity, Low-Amplitude Spinal Manipulation //J Biomech Eng. – 2010. – Vol. 132(7). – P. 1-20. doi: 10.1115/1.4001030.
  200. Mehta R, Prilutsky BI Task-dependent inhibition of slow-twitch soleus and excitation of fast-twitch gastrocnemius do not require high movement speed and velocity-dependent sensory feedback // Front Physiol. – 2014. – Vol. 5. – P. 410.

You may be interested