Approbation of the model of intervertebral disk degeneration in rabbits

DOI: 10.29296/2618723X-2021-01-03

I. Kuksgauz, ORCID 0000-0002-2610-6888
Ya. Guschin, ORCID 0000-0002-7656-991X
E. Mazukina, ORCID 0000-0002-1448-921X
V. Kashkin, ORCID 0000-0002-7202-0233
V. Makarov, ORCID 0000-0002-2447-7888

Research-and-manufacturing company «Home оf Pharmacy»,
188663, Russia, b. 245, 3, st. Zavodskaya, Kuzmolovskiy, Vsevolozhskiy district, Leningrad region

E-mail: [email protected]


Keywords: discopathy degeneration in the intervertebral discs rabbits

For citation:

Kuksgauz I., Guschin Ya., Mazukina E., Kashkin V., Makarov V. Approbation of the model of intervertebral disk degeneration in rabbits . Laboratory Animals for Science. 2021; 1. https://doi.org/10.29296/2618723X-2021-01-03

Abstract

The aim of this study was to test a model of the formation of degenerative changes in the intervertebral discs in rabbits, as a possible model of discopathy, and to develop a simple and reproducible protocol. There are many models, ranging from in vitro to in silico, which can be informative for the study of specific components of intervertebral disc degeneration. However, in vivo studies can more accurately reproduce the pathogenesis of the disease. Pathology was simulated by puncturing with a needle with a diameter of 18G (1.27 mm) of the intervertebral disc at the level of the lumbar segment L5/L6. The success of the formation of pathology was evaluated using the subsequent morphometric, x-ray and histological assessment of damage to the intervertebral disc at various time intervals after the induction of pathology. The manifestation of pathological changes in the intervertebral disc was accompanied by the reduction in disk height, which was confirmed by morphometry and x-ray analysis. Histological examination revealed a disruption in the organization of collagen fibers, some of which were torn or defocused, with fibrin being deposited between them. Fibrosis of the gelatinous nucleus was also noted, in some cases its destruction with the formation of fibrous "septa" and compaction of the intercellular matrix. In addition, a concomitant pathology was revealed, which was characterized by hemorrhages both in the surrounding tissues and directly in the disk tissue, as well as the formation of hernias, which were formed both in the lateral or vertical directions. Thus, a protocol for modeling and assessing the severity of the process of degeneration of the intervertebral discs after their puncture with a needle was formed. It was been shown that the onset of degenerative changes was observed already 6 weeks after the induction of pathology, had a maximum development by 8 weeks, and was observed up to 22 weeks. After 14 weeks degenerative changes, the presence of degenerative changes in neighboring intact disks were observed, which indicates the systemic symptoms of the damage.

Full text avaliable in Russain only

Autors’ contributions

Kuksgauz I. – participation in experimental work, writing the text, analysis of literature;

Guschin Ya. – pathological examination;

Mazukina E. – participation in experimental work;

Kashkin V. – elaboration of the study idea, analysis of literature, editing of the text, analysis and interpretation of the study results;

Makarov V. – editing of the text, approval of the final version of the paper to be published.

References

  1. Sahlman J., Inkinen R., Hirvonen T., Lammi M. J., Lammi P. E., Nieminen J., Lapveteläinen T., Prockop D. J., Arita M., Li S. W., Hyttinen M. M., Helminen H. J., Puustjärvi K. Premature vertebral endplate ossification and mild disc degeneration in mice after inactivation of one allele belonging to the Col2a1 gene for Type II collagen // Spine (Phila Pa 1976). ‒ 2001. ‒ V. 26, No 23. ‒ P. 2558-65.
  2. Platenberg R. C., Hubbard G. B., Ehler W. J., Hixson C. J. Spontaneous disc degeneration in the baboon model: magnetic resonance imaging and histopathologic correlation // J Med Primatol. ‒ 2001. ‒ V. 30, No 5. ‒ P. 268-72.
  3. Iatridis J. C., Mente P. L., Stokes I. A., Aronsson D. D., Alini M. Compression-induced changes in intervertebral disc properties in a rat tail model // Spine (Phila Pa 1976). ‒ 1999. ‒ V. 24, No 10. ‒ P. 996-1002.
  4. Ching C.T., Chow D. H., Yao F.Y., Holmes A.D. The effect of cyclic compression on the mechanical properties of the inter-vertebral disc: an in vivo study in a rat tail model // Clin Biomech (Bristol, Avon). ‒ 2003. ‒ V. 18, No 3. ‒ P. 182-9.
  5. Rousseau M. A., Ulrich J. A., Bass E. C., Rodriguez A. G., Liu J. J., Lotz J. C. Stab incision for inducing intervertebral disc degeneration in the rat // Spine (Phila Pa 1976). ‒ 2007. ‒ V. 32, No 1. ‒ P. 17-24.
  6. Phillips F.M., Reuben J., Wetzel F.T. Intervertebral disc degeneration adjacent to a lumbar fusion. An experimental rabbit model // J Bone Joint Surg Br. ‒ 2002. ‒ V. 84, No 2. ‒ P. 289-94.
  7. Nuckley D. J., Kramer P. A., Del Rosario A., Fabro N., Baran S., Ching R. P. Intervertebral disc degeneration in a naturally occurring primate model: radiographic and biomechanical evidence // J Orthop Res. ‒ 2008. ‒ V. 26, No 9. ‒ P. 1283-8.
  8. Aoki Y., Akeda K., An H., Muehleman C., Takahashi K., Moriya H., Masuda K. Nerve fiber ingrowth into scar tissue formed following nucleus pulposus extrusion in the rabbit anular-puncture disc degeneration model: effects of depth of puncture // Spine (Phila Pa 1976). ‒ 2006. ‒ V. 31, No 21. ‒ P. E774-80.
  9. Yerramalli C. S., Chou A. I., Miller G. J., Nicoll S. B., Chin K. R., Elliott D. M. The effect of nucleus pulposus crosslinking and glycosaminoglycan degradation on disc mechanical function // Biomech Model Mechanobiol. ‒ 2007. ‒ V. 6, No 1-2. ‒ P. 13-20.
  10. Jeong J. H., Lee J. H., Jin E. S., Min J. K., Jeon S. R., Choi K. H. Regeneration of intervertebral discs in a rat disc degeneration model by implanted adipose-tissue-derived stromal cells // Acta Neurochir (Wien). ‒ 2010. ‒ V. 152, No 10. ‒ P. 1771-7
  11. Oehme D., Ghosh P., Shimmon S., Wu J., McDonald C., Troupis J. M., Goldschlager T., Rosenfeld J. V., Jenkin G. Mesenchymal progenitor cells combined with pentosan polysulfate mediating disc regeneration at the time of microdiscectomy: a preliminary study in an ovine model // J Neurosurg Spine. ‒ 2014. ‒ V. 20, No 6. ‒ P. 657-69.
  12. Masuda K., Aota Y., Muehleman C., Imai Y., Okuma M., Thonar E. J., Andersson G. B., An H. S. A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration // Spine (Phila Pa 1976). ‒ 2005. ‒ V. 30, No 1. ‒ P. 5-14.
  13. Bergknut N., Rutges J. P., Kranenburg H. J., Smolders L. A., Hagman R., Smidt H. J., Lagerstedt A. S., Penning L. C., Voorhout G., Hazewinkel H. A., Grinwis G. C., Creemers L. B., Meij B. P., Dhert W. J. The dog as an animal model for intervertebral disc degeneration? // Spine (Phila Pa 1976). ‒ 2012. ‒ V. 37, No 5. ‒ P. 351-8.
  14. Vadalà G., Russo F., Pattappa G., Peroglio M., Stadelmann V. A., Roughley P., Grad S., Alini M., Denaro V. A Nucleotomy Model with Intact Annulus Fibrosus to Test Intervertebral Disc Regeneration Strategies // Tissue Eng Part C Methods. ‒ 2015. ‒ V. 21, No 11. ‒ P. 1117-24.
  15. Y. Zhang, S. Drapeau, H. S. An, D. Markova, B. A. Lenart, D. G. Anderson. Histological features of the degenerating intervertebral disc in a goat disc-injury model // Spine (Phila Pa 1976). ‒ 2011. ‒ V. 36, No 19. ‒ P. 1519–1527.
  16. Acosta F. L., Jr., Metz L., Adkisson H. D., Liu J., Carruthers-Liebenberg E., Milliman C., Maloney M., Lotz J. C. Porcine intervertebral disc repair using allogeneic juvenile articular chondrocytes or mesenchymal stem cells // Tissue Eng Part A. ‒ 2011. ‒ V. 17, No 23-24. ‒ P. 3045-55.
  17. J. P. Norcross, G. E. Lester, P. Weinhold, L. E. Dahners. An in vivo model of degenerative disc disease // Journal of Orthopaedic Research. ‒ 2003. ‒ V. 21, No 1. ‒ P. 183-188.
  18. C.Court, O. K.Colliou, J.R.Chin, E. Liebenberg, D. S. Bradford, J.C. Lotz. The effect of static in vivo bending on themurine intervertebral disc // Spine Journal. ‒ 2001. ‒ V. 1, No 4. ‒ P. 239–245.
  19. С. В. Малышкина, Н. В. Дедух, А. А. Левшин, С. Б. Костерин. Моделирование дегенерации межпозвонкового диска в эксперименте на животных (обзор литературы) // Ортопедия, травматология и протезирование. ‒ 2015. ‒ T. 1. ‒ C. 114-124.
  20. Cassidy J. D., Yong-Hing K., Kirkaldy-Willis W. H., Wilkinson A. A. A study of the effects of bipedism and upright posture on the lumbosacral spine and paravertebral muscles of the Wistar rat // Spine (Phila Pa 1976). ‒ 1988. ‒ V. 13, No 3. ‒ P. 301-8.
  21. Higuchi M., Abe K., Kaneda K. Changes in the nucleus pulposus of the intervertebral disc in bipedal mice. A light and electron microscopic study // Clin Orthop Relat Res. ‒ 1983. No 175. ‒ P. 251-7.
  22. Daly C., Ghosh P., Jenkin G., Oehme D., Goldschlager T. A Review of Animal Models of Intervertebral Disc Degeneration: Pathophysiology, Regeneration, and Translation to the Clinic // Biomed Res Int. ‒ 2016. ‒ V. 2016. ‒ P. 5952165.
  23. Ashinsky B. G., Gullbrand S. E., Bonnevie E. D., Mandalapu S. A., Wang C., Elliott D. M., Han L., Mauck R. L., Smith H. E. Multiscale and multimodal structure-function analysis of intervertebral disc degeneration in a rabbit model // Osteoarthritis Cartilage. ‒ 2019. ‒ V. 27, No 12. ‒ P. 1860-1869.
  24. Xin L., Zhang C., Zhong F., Fan S., Wang W., Wang Z. Minimal invasive annulotomy for induction of disc degeneration and implantation of poly (lactic-co-glycolic acid) (PLGA) plugs for annular repair in a rabbit model // Eur J Med Res. ‒ 2016. ‒ V. 21. ‒ P. 7.
  25. Шехтер А.Б., Басков В.А., Захаркина О.Л., Гуллер А.Е., Борщенко И.А., Колышев И.Ю., Капанадзе Г.Д., Басков А.В., Соболь Э.Н. Моделирование дегенеративных изменений межпозвонковых дисков (остеохондроза) у кроликов: макроскопическое и гистологическое изучение // БИОМЕДИЦИНА. ‒ 2009. ‒ T. 1, № 2. ‒ C. 41-69.
  26. Kong M. H., Do D. H., Miyazaki M., Wei F., Yoon S. H., Wang J. C. Rabbit Model for in vivo Study of Intervertebral Disc Degeneration and Regeneration // J Korean Neurosurg Soc. ‒ 2008. ‒ V. 44, No 5. ‒ P. 327-33.
  27. Kwon Y. J. Resveratrol has anabolic effects on disc degeneration in a rabbit model // J Korean Med Sci. ‒ 2013. ‒ V. 28, No 6. ‒ P. 939-45.
  28. Silberberg R. Histologic and morphometric observations on vertebral bone of aging sand rats // Spine (Phila Pa 1976). ‒ 1988. ‒ V. 13, No 2. ‒ P. 202-8.
  29. Bergknut N., Auriemma E., Wijsman S., Voorhout G., Hagman R., Lagerstedt A. S., Hazewinkel H. A., Meij B. P. Evaluation of intervertebral disk degeneration in chondrodystrophic and nonchondrodystrophic dogs by use of Pfirrmann grading of images obtained with low-field magnetic resonance imaging // Am J Vet Res. ‒ 2011. ‒ V. 72, No 7. ‒ P. 893-8.
  30. Ren S., Liu Y., Ma J., Liu Y., Diao Z., Yang D., Zhang X., Xi Y., Hu Y. Treatment of rabbit intervertebral disc degeneration with co-transfection by adeno-associated virus-mediated SOX9 and osteogenic protein-1 double genes in vivo // Int J Mol Med. ‒ 2013. ‒ V. 32, No 5. ‒ P. 1063-8.
  31. Grubbs F. E. Procedures for Detecting Outlying Observations in Samples // Technometrics. ‒ 1969. ‒ V. 11, No 1. ‒ P. 1-21.
  32. Ord K. Outliers in statistical data // International Journal of Forecasting. ‒ 1996. ‒ V. 12, No 1. ‒ P. 175-176.
  33. Mwale F., Masuda K., Grant M. P., Epure L. M., Kato K., Miyazaki S., Cheng K., Yamada J., Bae W. C., Muehleman C., Roughley P. J., Antoniou J. Short Link N promotes disc repair in a rabbit model of disc degeneration // Arthritis Research & Therapy. ‒ 2018. ‒ V. 20, No 1. ‒ P. 201.

You may be interested