Alternative Methods of Studies. Computer-Aided Estimation of Rodents Acute Toxicity

DOI: 10.29296/2618723X-2019-04-04

V. S. Sukhachev1, 2,  ORCID ID: 0000-0003-4194-8765,
S. M. Ivanov1,  ORCID ID: 0000-0002-3177-6237,
D. A. Filimonov1,  ORCID ID: 0000-0002-0339-8478,
V. V. Poroikov1,  ORCID ID: 0000-0001-7937-2621

1Pogodinskaya street, 10 bldg. 8, Moscow, 119121, Russia;

2RTU MIREA, M.V. Lomonosov Institute of Fine Chemical Technologies;

Vernadsky prospect, 86 bldg. 3, Moscow, 119571, Russia

E-mail: [email protected]


Keywords: acute toxicity LD50 mice rats in silico prediction

For citation:

Sukhachev V. S. , Ivanov S. M. , Filimonov D. A. , Poroikov V. V. Alternative Methods of Studies. Computer-Aided Estimation of Rodents Acute Toxicity. Laboratory Animals for Science. 2019; 4. https://doi.org/10.29296/2618723X-2019-04-04

Abstract

The determination of LD50 values in rodents is the mandatory stage of experimental preclinical studies of pharmacological substances. We implemented in silico estimation of the LD50 value for substance with four routes of administration (intraperitoneal, intravenous, oral, subcutaneous) using GUSAR (General Unrestricted Structure-Activity Relationships) computer program. Both the stand-alone version (for rats and mice) and a web service freely available through the Internet (for rats) are developed. During the prediction of the LD50 value for the analyzed compound, its belonging to the applicability domain of the used QSAR model is estimated. The corresponding information is provided to the investigator. Using the prediction of the LD50 value for the local anesthetic Procaine (Novocaine), the possibilities and limitations of computer estimation of acute toxicity are demonstrated. In the absence of experimental LD50 values, it is possible to use the calculated values obtained with the built QSAR models, since by comparison of known experimental and calculated values in most cases we found that classification of hazard is the same in both cases. An analysis of the availability of experimental data on the acute toxicity of several local anesthetics (Benzocaine, Butamben, Chloroprocaine hydrochloride) for mice and rats in the ChemIDplus information system showed that these data are presented only for some routes of drug administration. We supplemented the corresponding “gaps” in the data with the estimated values obtained based on the GUSAR models. Also, we developed the method of generating a xenobiotic metabolism network in the human body, for fifteen types of biotransformation reactions carried out by the eight major cytochrome P450 isoforms and various transferases, hydrolases, and esterases involved in the xenobiotic metabolism. Combining this method and the developed QSAR models, we created a public web resource MetaTox (http://www.way2drug.com/mg), which provides an integrated assessment of xenobiotics toxicity based on the structures of the parent compound and its metabolites. Using computer prediction, the safer compounds may be selected for experimental testing of acute toxicity among various substances with the required pharmacological effect, which reduces the number of experiments in laboratory animals.

Full text avaliable in Russain only

References

  1. From molecule to medicine (Report of August 20, 2018). https://www.openaccessgovernment.org/from-molecule-to-medicine/48868/
  2. Liebsch M., Grune B., Seiler A., Butzke D., Oelgeschläger M., Pirow R., Adler S., Riebeling C., Luch A. Alternatives to animal testing: current status and future perspectives. Arch. Toxicol. 2011; 85: 841–58. DOI: 10.1007/s00204-011-0718-x
  3. Красовский Г.Н., Рахманин Ю.А., Егорова Н.А. Экстраполяция токсикологических данных с животных на человека. М.: Медицина, 2009: 208. [Krasovskii G.N., Rakhmanin Yu.A., Egorova N.A. Ekstrapolyatsiya toksikologicheskikh dannykh s zhivotnykh na cheloveka. Moskva: Meditsina, 2009: 208 (in Russ)].
  4. Russell W.M.S., Burch, R.L. The Principles of Humane Experimental Technique. London, UK: Methuen. 1959: 238.
  5. Doke S.K., Dhawale S.C. Alternatives to animal testing: A review. Saudi Pharmaceutical Journal. 2015; 23: 223–9.
  6. Poroikov V., Filimonov D., Lagunin A., Gloriozova T., Zakharov A. PASS: Identification of probable targets and mechanisms of toxicity. SAR QSAR in Environ. Res. 2007; 18: 101–10.
  7. Пожарицкая О.Н., Шиков А.Н., Макаров В.Г. Токсикокинетика – методологические подходы. Обзорная статья. Лабораторные животные для научных исследований. 2019; 1: 76–94. [Pozharitskaya O.N., Shikov A.N., Makarov V.G. Toksikokinetika – metodologicheskie podkhody. Obzornaya stat'ya. Laboratornye zhivotnye dlya nauchnykh issledovanii. 2019; 1: 76–94 (in Russ)].
  8. Захаров А.В., Филимонов Д.А., Лагунин А.А., Поройков В.В. Свидетельство об официальной регистрации программы для ЭВМ GUSAR (General Unrestricted Structure Activity Relationships) № 2006613591 от 16 октября 2006 г. М.: Федеральная служба по интеллектуальной собственности, патентам и товарным знакам, 2006. [Zakharov A.V., Filimonov D.A., Lagunin A.A., Poroikov V.V. Svidetel'stvo ob ofitsial'noi registratsii programmy dlya EVM GUSAR (General Unrestricted Structure Activity Relationships) № 2006613591 ot 16 oktyabrya 2006 g. Moskva: Federal'naya sluzhba po intellektual'noi sobstvennosti, patentam i tovarnym znakam, 2006 (in Russ)].
  9. Filimonov D.A., Zakharov A.V., Lagunin A.A., Poroikov V.V. QNA based “Star Track” QSAR approach. SAR and QSAR Environ. Res. 2009; 20: 679–709.
  10. Филимонов Д.А., Акимов Д.В., Поройков В.В. Метод самосогласованной регрессии для количественного анализа связи структуры и свойств химических соединений. Хим.-фарм. журн. 2004; 38: 21–4. [Filimonov D.A., Akimov D.V., Poroikov V.V. Metod samosoglasovannoi regressii dlya kolichestvennogo analiza svyazi struktury i svoistv khimicheskikh soedinenii. Khim.-farm. zhurn. 2004; 38: 21–4 (in Russ)].
  11. Zakharov A.V., Lagunin A.A., Filimonov D.A., Poroikov V.V. Quantitative prediction of antitarget interaction profiles for chemical compounds. Chem. Res. Toxicol. 2012; 25: 2378–85.
  12. Раевский О.А. Моделирование соотношений «структура–свойство». М.: Добросвет – Издательство «КДУ». 2016: 288. [Raevskii O.A. Modelirovanie sootnoshenii «struktura-svoistvo». Moskva: Dobrosvet – Izdatel'stvo «KDU». 2016: 288 (in Russ)].
  13. Lagunin A., Zakharov A., Filimonov D., Poroikov V. QSAR modelling of rat acute toxicity on the basis of PASS prediction. Molecular Informatics. 2011; 30: 241–50.
  14. Acute rat toxicity prediction. http://www.way2drug.com/gusar/acutoxpredict.html
  15. Прокаин (Procaine). https://www.rlsnet.ru/mnn_index_id_431.htm
  16. ChemIDplus. https://chem.nlm.nih.gov/chemidplus/
  17. Авдеева О.И., Макаренко И.Е., Макарова М.Н., Шекунова Е.В., Кашкин В.А., Макаров В.Г. Гармонизация исследований по проведению острой токсичности в соответствии с российскими и зарубежными требованиями. Международный вестник ветеринарии. 2015; 1: 103–9. [Avdeeva O.I., Makarenko I.E., Makarova M.N., Shekunova E.V., Kashkin V.A., Makarov V.G. Garmonizatsiya issledovanii po provedeniyu ostroi toksichnosti v sootvetstvii s rossiiskimi i zarubezhnymi trebovaniyami. Mezhdunarodnyi vestnik veterinarii. 2015; 1: 103–9 (in Russ)].
  18. ChemAxon: Software solutions and services for chemistry & biology. https://chemaxon.com/
  19. Dalby A., Nourse J.G., Hounshell W.D., Gushurst A.K.I., Grier D.L., Leland B.A., Laufer J. Description of several chemical structure file formats used by computer programs developed at Molecular Design Limited. J. Chem. Inf. Comput. Sci. 1992; 32: 244–55.

You may be interested