Inctrumental Method For Determining The Estrous Cycle Stages In Small Laboratory Rodents

DOI: 10.29296/2618723X-2018-04-10

I.V. Belozertseva(1), D.D. Merkulovs(2), O.J. Vilitis(3), B.V. Skryabin(4) 1-Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, 6-8, Lva Tolstogo str., St. Petersburg, 197022, Russia; 2-ELMI Ltd., 11-136 Krivu iela, Riga, LV-1006, Latvia; 3-Institute of Solid State Physics, University of Latvia, 8 Kengaraga str., LV-1063, Riga, Latvia; 4-Transgenic animal and genetic engineering Models (TRAM); Faculty of Medicine of the Westfalian Wilhelms-University. Von Esmarch St. 56, D-48149 Muenster, Germany Е-mail: [email protected]


Keywords: small laboratory rodents estrous cycle active resistance impedance

For citation:

Belozertseva I.V., Merkulovs D.D., Vilitis O.J., Skryabin B.V. Inctrumental Method For Determining The Estrous Cycle Stages In Small Laboratory Rodents. Laboratory Animals for Science. 2018; 4. https://doi.org/10.29296/2618723X-2018-04-10

Abstract

Summary. An instrumental method/device for detecting of estrous stages in small rodents was tested in mice and rats. Cyclic changes in active resistance (RS) of the epithelial cell layer of vaginal mucosa were studied with a new mouse estrous detector device - MED-PRO 100 (Elmi Ltd., Latvia). The active resistance (AR) was measured at the frequency of 1 kHz by inserting the probe (l=14 mm, d=1.82 mm; measuring range – 0-50 kΩ) into the animal’s vagina for 1-2 sec. The use of small probe detector was compared to the classical vaginal smear collection procedure, using a lavage, and followed by cytological evaluation. The instrumental method was found to be similarly accurate, more expedient, less traumatic to an animal and less time consuming. The AR curves were quit similar during a few estrous cycles (especially in rats), and the AR changes corresponded to the cytological changes in vaginal smears. However, the maximum AR values corresponded to different stages of the cycle in mice and rats. In rats, the electrical AR was significantly higher at proestrus (over 5 kΩ), when compared to other stages of the estrous cycle, and statistically higher in metestrus, when compared to estrus and diestrus stages. In mice, the increase in AR occurred at the estrus stage. We conclude that the use of the MED-PRO 100 device provides an accurate approach to evaluate the estrous cycle in rats and mice. It can be used to determine an optimal time for animal mating, the use of hormonal superovulation or artificial reproduction technologies, as well as for optimization of behavioral, pharmacological and toxicological studies in female laboratory rodents.

References

  1. Bradshaw H.B., Temple J.L., Wood E., & Berkley K.J. Estrous variations in behavioral responses to vaginal and uterine distention in the rat. Pain. 1999; 82(2): 187–97. https://doi.org/10.1016/S0304-3959(99)00049-4
  2. Shekunova E.V. Bespalov A.Y. Estrous cycle stage-dependent expression of acute tolerance to morphine analgesia in rats. Eur. J. Pharmacol. 2004; 486(3): 259-64.
  3. Goldman J.M., Murr A.S. and Cooper R.L. The Rodent Estrous Cycle: Characterization of Vaginal Cytology and Its Utility in Toxicological Studies. Birth. Defects Res. (Part B). 2007; 80:84–97.
  4. Byers S.L., Wiles M.V., Dunn S.L., Taft R.A. Mouse estrous cycle identification tool and images. PLoS One. 2012:e35538. doi: 10.1371/journal.pone.0035538.
  5. Nagy A., Gertsenstein M., Vintersten K, Behringer R. Manipulating the Mouse Embryo: A Laboratory Manual. 3rd Ed. (2003) Cold Spring Harbor Press. New York.
  6. Tarin J.J., Perez-Albala S., Gomez-Piquer V., Hermenegildo C., Cano A. Stage of the estrous cycle at the time of pregnant mare’s serum gonadotropin injection affects pre-implantation embryo development in vitro in the mouse. Mol. Reprod. Dev. 2002; 62(3): 312-9.
  7. Korablev A.N., Serova I.A., Skryabin B.V. Manipulyacii s rannimi e`mbrionami myshi dlya sozdaniya geneticheski modificirovannyh zhivotnyh. Vavilovskiy zhurnal genetiki i selekcii. 2017; 21(7):758-63. DOI 10.18699/VJ17.291
  8. Jaramillo L.M., Balcazar I.B., Duran C. Using vaginal wall impedance to determine estrous cycle phase in Lewis rats. Lab. Anim. (NY). 2012; 41(5):122-8. doi: 10.1038/laban0512-122.
  9. Stockard C.R., Papanicolau G. N. The existence of a typical oestrous cycle in the guinea pig-with a study of its histological and physiological changes. Am. J. Anat. 1917; 22: 225.
  10. Long J.A., Evans H.M. The oestrous cycle in the rat and it associated phenomena. Mem. Univ. Calif. 1922; 6:1–143.
  11. Emery F.E., Bchwabe E.L. The vaginal smears of rats as influenced by frequent examinations. The Anatomical Record. 1936; 64 (2): 147-54.
  12. Wade N.J., Doisy E.A. Cornifination of vaginal epithelium of ovariectomized rat produced by smearing. Proc. Soc. Exp. Biol. and Med. 1935. 32: 707.
  13. Ayzinbudas L.B. i Dovil`tis P.P. Sposob opredeleniya optimal`nogo vremeni osemeneniya korov. Avtorskoe svidetel`stvo SSSR №145708 (zayavleno 30 iyunya 1961 g. za №736350/30-15 v Komitet po delam izobreteniy i otkrytiy pri Sovete Ministrov SSSR). Byulleten` izobreteniy. 1962; 6.
  14. Lashas A.V., Bakshis L.S., Kukis I.I., Bakshis, Ayzinbudas L.B. i Dovil`tis P.P. Pribor dlya opredeleniya optimal`nogo vremeni osemeneniya zhivotnyh, naprimer korov. MPK: A 01k. Nomer patenta: 178603 (opublikovano: 22.01.1966). Byulleten` №3.
  15. Bartos L. Vaginal impedance measurement used for mating in the rat. Lab. Anim. 1977; 11: 53–5.
  16. Taradach C. Monitoring of the Oestrus Cycle in the Rat by Measurement of Vaginal Impedance. In: Chambers C.M., Chambers P.L. (eds) New Toxicology for Old. Archives of Toxicology (Supplement). 1982; 5: 184-6.
  17. Ramos S.D., Lee J.M., Peuler J.D. An inexpensive meter to measure differences in electrical resistance in the rat vagina during the ovarian cycle. J. Appl. Physiol. 2001; 91: 667–70.
  18. Bartos L. and Sedlacek J. Vaginal impedance measurement used for mating in the guinea pig. Lab. Animals.1977; 11:57–8.
  19. Vilitis O., Merkulovs D., Mironovs I., Mironovs A., Merkulova V. Estrous Cycle Detector, Patent LV15278, International Publication Date 20.05.2018.
  20. Nakamura H., Hosono T., Kumasawa K., Jones C.J.P., Aplin J.D., Kimura T. Vaginal bioelectrical impedance determines uterine receptivity in mice. Human Reproduction. 2018; p. 1 – 8. doi:10.1093/humrep/dey313
  21. Weixelbaumer K.M., Drechsler S., Wehrenpfennig P., Khadem A., Bahrami S., Tichy A., Palme R., Osuchowski M.F. Estrus Cycle Status Defined by Vaginal Cytology Does Not Correspond to Fluctuations of Circulating Estrogens in Female Mice. SHOCK, Vol. 41, No. 2, pp. 145-153, 2014. doi: 10.1097/SHK.0000000000000070
  22. Vaydo A.I., Shiryaeva N.V., Pavlova M.B., Levina A.S., Hlebaeva D.A.-A., Lyubashina O.A., Dyuzhikova N.A. Selektirovannye linii krys s vysokim i nizkim porogom vozbudimosti: model` dlya izucheniya dezadaptivnyh sostoyaniy, zavisimyh ot urovnya vozbudimosti nervnoy sistemy. Laboratornye zhivotnye dlya nauchnyh issledovaniy. 2018; 3. https://doi.org/10/29926/2618723X-2018-03-02
  23. Koto M., Miwa M., Tsuji K., Okamoto M, and Adachi J. Change in the electrical impedance caused by cornification of the epithelial cell layer of the vaginal mucosa in the rat. Exp. Anim. 1987; 36: 151–6.
  24. Agrawal V., Jaiswal M.K., Chaturvedi M.M., Tiwari D.C., Jaiswal Y.K. Lipopolysaccharide alters the vaginal electrical resistance in cycling and pregnant mice. Am. J. Reprod. Immunol. 2009. 61: 158–66. doi:10.1111/j.1600-0897.2008.00677.x

You may be interested