Features of the respiratory system of animals used in pre-clinical studies which should be taken account of the modeling lung pathologies

D.R. Kargopoltceva1, Veterinarian, ORCID: 0000-0002-9944-5223;
А.Е. Katelnikova1, PhD, Head of Specific toxicology department, ORCID: 0000-0003-3203-9869;
К.L. Kryshen1, PhD, Head of Toxicology and microbiology department, ORCID: 0000-0003-1451-7716;
Ya.A. Guschin2, Head of Histology and pathomorphology department, ORCID: 0000-0002-7656-991Х

1«Institute of Pre-Clinical Research» Ltd.,
188663, Leningradskaya region, Vsevolozhskiy district, Kuzmolovskiy, Zavodskaya st., 3-245, Russia;

2Scientific-Production Organization «HOME OF PHARMACY» JSC,
188663, Leningradskaya region, Vsevolozhskiy district, Kuzmolovskiy, Zavodskaya st., 3-245, Russia

Е-mail: kargopoltceva.dr@doclinika.ru

Abstract

The respiratory system is one of the most important systems of organism, providing oxygen from the air to respiratory tract, carrying out gas exchange and removing carbon dioxide back into the environment. Respiratory system diseases affect at the lives of large numbers of people around the world. Planning studies with assessment of pharmacological activity and toxicity of drugs via endotracheal and inhalation routes of administration it should be considered specific features in anatomy, microstructure and pathophysiological processes in various animal species, including in comparison with humans. This review considers anatomical and histological features of respiratory system of mice, rats, guinea pigs, rabbits, pigs and dogs, which are used in biomedical studies and their comparative characteristics regard to the structure of respiratory system in humans. Studying of literature data, it was found that the most similarity to humans, both at macroscopic and microscopic levels, is in guinea pigs and dwarf pigs. The search for articles published in English was carried in the Google Scholar and PubMed (1970–2020) databases, in Russian - in the scientific electronic library eLIBRARY.RU. In addition to considering anatomical and histological features of respiratory system structure of laboratory animals, this review also included models of lung pathologies reproduced in the animals listed above. So, to modeling chronic obstructive pulmonary disease, fibrosis, inflammation, emphysema mice and rats are used. Mice of certain lines like guinea pigs are used to modeling asthma. Laboratory animals are also used to reproduce bacterial and viral diseases of respiratory system. Thus, a very careful approach to selection of a test system is required for modeling diseases of respiratory system. This is necessary to obtain more similar clinical symptoms and pathophysiological processes with humans in certain lung pathologies, which in the future will make it possible to better predict pharmacodynamic and toxic effects of drugs in clinical practice.

Full text avaliable in Russain only.

Authors ' contributions

D.R. Kargopoltceva – idea of research, literary data collection, writing of the text.

А.Е. Katelnikova – literary data collection, editing of the text.

К.L. Kryshen – literary data collection, editing of the text.

Ya.A. Guschin – literary data collection, editing of the text.

References

  1. Ткаченко Б.И. Нормальная физиология человека // М.: Медицина. – 2005. – 879 с. [Tkachenko B.I. Normal'naya fiziologiya cheloveka // M.: Medicina. – 2005. – 879 s. (In Russ.)]
  2. Reczyńska K., Tharkar P., Kim S.Y., Wang Y., Pamuła E., Chan H.K., Chrzanowski, W. Animal models of smoke inhalation injury and related acute and chronic lung diseases // Advanced drug delivery reviews. – 2018. – Vol. 123. – P. 107-134. DOI: 10.1016/j.addr.2017.10.005.
  3. Jacob S., Deyo D.J., Cox R.A., Traber D.L., Hawkins H.K. Assessment of lung inflammation in a mouse model of smoke inhalation and burn injury: strain-specific differences // Toxicology Mechanisms and Methods. – 2008. – Vol. 18, No 7. – P. 551-559. DOI: 10.1080/15376510802251993.
  4. Котельников В.Н., Слабенко Э.В., Заяц Ю.В., Гельцер Б.И. Экспериментальные модели хронической обструктивной болезни легких: методические подходы и обоснование выбора // Российский физиологический журнал им. ИМ Сеченова. – 2018. – Т. 104. – №. 4. – С. 396—411. [Kotel'nikov V.N., Slabenko E.V., Zayac YU.V., Gel'cer B.I. Eksperimental'nye modeli hronicheskoj obstruktivnoj bolezni legkih: metodicheskie podhody i obosnovanie vybora // Rossijskij fiziologicheskij zhurnal im. IM Sechenova. – 2018. – T. 104. – №. 4. – S. 396—411. (In Russ.)]
  5. Irvin C.G., Bates J.H.T. Measuring the lung function in the mouse: the challenge of size // Respiratory research. – 2003. – Vol. 4, No 1. – P. 1. DOI: 10.1186/rr199.
  6. Bruun C.S., Jensen L.K., Leifsson P.S., Nielsen J., Cirera S., Jørgensen C.B., Fredholm M. Functional characterization of a porcine emphysema model // Lung. – 2013. – Vol. 191, No 6. – P. 669-675. DOI: 10.1007/s00408-013-9504-2.
  7. Hyde D.M., Hamid Q., Irvin C.G. Anatomy, pathology, and physiology of the tracheobronchial tree: emphasis on the distal airways // Journal of Allergy and Clinical Immunology. – 2009. – Vol. 124, No 6. – P. 72-77. DOI: 10.1016/j.jaci.2009.08.048.
  8. Treuting P.M., Dintzis S.M., Liggitt D., Frevert C.W. Comparative anatomy and histology: a mouse and human atlas. – Academic Press, 2011. – 552 p.
  9. Fröhlich E., Salar-Behzadi S. Toxicological assessment of inhaled nanoparticles: role of in vivo, ex vivo, in vitro, and in silico studies // International journal of molecular sciences. – 2014. – Vol. 15, No 3. – P. 4795-4822. DOI: 10.3390/ijms15034795.
  10. Wright J.L., Cosio M., Churg A. Animal models of chronic obstructive pulmonary disease // American journal of physiology-lung cellular and molecular physiology. – 2008. – Vol. 295, No 1. – P. 1-15. DOI: 10.1152/ajplung.90200.2008.
  11. Vlahos R., Bozinovski S. Preclinical murine models of chronic obstructive pulmonary disease // European journal of pharmacology. – 2015. – Vol. 759. – P. 265-271. DOI: 10.1016/j.ejphar.2015.03.029.
  12. Vlahos R., Bozinovski S. Recent advances in pre-clinical mouse models of COPD // Clinical science. – 2014. – Vol. 126, No 4. – P. 253-265. DOI: 10.1042/CS20130182.
  13. Ghorani, V., Boskabady, M. H., Khazdair, M. R., & Kianmeher, M. Experimental animal models for COPD: a methodological review // Tobacco induced diseases. – 2017. – Vol. 15, No 1. – P. 1-13. DOI: 10.1186/s12971-017-0130-2.
  14. Bischoff S.C. Role of mast cells in allergic and non-allergic immune responses: comparison of human and murine data // Nat Rev Immunol. – 2007. – Vol. 7, No 2. – P. 93–104. DOI: 10.1038/nri2018.
  15. Schmit D., Le D.D., Heck S., Bischoff M., Tschernig T., Herr C., Bals R. Allergic airway inflammation induces migration of mast cell populations into the mouse airway // Cell Tissue Res. – 2017. – Vol. 369, No 2. – P. 331–340. DOI: 10.1007/s00441-017-2597-9.
  16. Andersson C.K, Mori M., Bjermer L., Lofdahl C.G., Erjefalt J.S. Novel site-specific mast cell subpopulations in the human lung // Thorax. – 2009. – Vol. 64, No 4. – P. 297–305. DOI: 10.1136/thx.2008.101683.
  17. Mullane K., Williams M. Animal models of asthma: reprise or reboot? // Biochemical pharmacology. – 2014. – Vol. 87, No 1. – P. 131-139. DOI: 10.1016/j.bcp.2013.06.026.
  18. Walkin, L., Herrick, S. E., Summers, A., Brenchley, P. E., Hoff, C. M., Korstanje, R., & Margetts, P. J. The role of mouse strain differences in the susceptibility to fibrosis: a systematic review // Fibrogenesis & tissue repair. – 2013. – Vol. 6, No 1. – P. 18. DOI: 10.1186/1755-1536-6-18.
  19. Rydell-Törmänen K., Johnson J. R. The applicability of mouse models to the study of human disease // Mouse Cell Culture. – 2019. – P. 3-22. DOI: 10.1007/978-1-4939-9086-3_1.
  20. Петренко В. М. Анатомия легких у белой крысы // Международный журнал прикладных и фундаментальных исследований. – 2013. – №. 10-3. – С. 414-417. [Petrenko V. M. Anatomiya legkih u beloj krysy // Mezhdunarodnyj zhurnal prikladnyh i fundamental'nyh issledovanij. – 2013. – №. 10-3. – S. 414-417. (In Russ.)]
  21. Matute-Bello G., Frevert C.W., Martin T.R. Animal models of acute lung injury //American Journal of Physiology-Lung Cellular and Molecular Physiology. – 2008. – Vol. 295, No 3. – P. L379-L399. DOI: 10.1152/ajplung.00010.2008.
  22. Tanner L., Single A.B. Animal models reflecting chronic obstructive pulmonary disease and related respiratory disorders: translating pre-clinical data into clinical relevance // Journal of innate immunity. – 2020. – Vol. 12, No 3. – P. 203-225. DOI: 10.1159/000502489.
  23. Петренко В.М. Строение и топография непарной вены и грудного протока у человека и белой крысы с позиций эмбриогенеза // Фундамент. исследов-я. – 2009. – № 10. – С. 46–47. [Petrenko V.M. Stroenie i topografiya neparnoj veny i grudnogo protoka u cheloveka i beloj krysy s pozicij embriogeneza // Fundament. issledov-ya. – 2009. – № 10. – S. 46–47. (In Russ.)]
  24. Chen X., Liu Q., Wang D., Feng S., Zhao Y., Shi Y., Liu Q. Protective effects of hydrogen-rich saline on rats with smoke inhalation injury // Oxidative medicine and cellular longevity. – 2015. – Vol. 2015. DOI: 10.1155/2015/106836.
  25. Kozma R.D.L.H., Alves E.M., Barbosa-de-Oliveira V.A., Lopes F.D.T.Q.D.S., Guardia R.C., Buzo H. V., Ribeiro-Paes M.J.D.O. A new experimental model of cigarette smoke-induced emphysema in Wistar rats // Jornal Brasileiro de Pneumologia. – 2014. – Vol. 40, No 1. – P. 46-54. DOI: 10.1590/S1806-37132014000100007.
  26. Su J., Li J., Lu Y., Li N., Li P., Wang Z., Liu X. The rat model of COPD skeletal muscle dysfunction induced by progressive cigarette smoke exposure: a pilot study // BMC Pulmonary Medicine. – 2020. – Vol. 20. – P. 1-13. DOI: 10.3325/cmj.2016.57.363
  27. Van Helden H.P.M. Kuijpers W.C., Steenvoorden D., Go C., Bruijnzeel P.L.B., Van Eijk M., Haagsman H.P. Intratracheal aerosolization of endotoxin (LPS) in the rat: a comprehensive animal model to study adult (acute) respiratory distress syndrome // Experimental lung research. – 1997. – Vol. 23, No 4. – P. 297-316. DOI: 10.3109/01902149709039228.
  28. Кательникова А.Е., Крышень К.Л., Макарова М.Н., Макаров В.Г. Экспериментальные модели острого бронхита на животных // Лабораторные животные для научных исследований. – 2019. – №. 1. – С. 127-151. [Katel'nikova A.E., Kryshen' K.L., Makarova M.N., Makarov V.G. Eksperimental'nye modeli ostrogo bronhita na zhivotnyh // Laboratornye zhivotnye dlya nauchnyh issledovanij. – 2019. – №. 1. – S. 127-151. (In Russ.)] DOI: 10.29296/2618723X-2019-01-10.
  29. Wright J.L., Churg A. Animal models of cigarette smoke-induced chronic obstructive pulmonary disease // Expert review of respiratory medicine. – 2010. – Vol. 4, No 6. – P. 723-734. DOI: 10.1586/ers.10.68
  30. Nikota J. K., Stämpfli M. R. Cigarette smoke-induced inflammation and respiratory host defense: Insights from animal models // Pulmonary pharmacology & therapeutics. – 2012. – Vol. 25, No 4. – P. 257-262. DOI: 10.1016/j.pupt.2012.05.005.
  31. Mercer P.F., Abbott-Banner K., Adcock I.M., Knowles R. G. Translational models of lung disease // Clinical Science. – 2015. – Vol. 128, No 4. – P. 235-256. DOI: 10.1042/CS20140373.
  32. Zhu F., Qiu X., Wang J., Jin Y., Sun Y., Lv T., Xia Z. A rat model of smoke inhalation injury // Inhalation toxicology. – 2012. – Vol. 24, No 6. – P. 356-364. DOI: 10.3109/08958378.2012.673179.
  33. Cambau E., Drancourt M. Steps towards the discovery of Mycobacterium tuberculosis by Robert Koch, 1882 // Clinical Microbiology and Infection. – 2014. – Vol. 20, No 3. – P. 196-201. DOI: 10.1111/1469-0691.12555.
  34. Padilla-Carlin D.J., McMurray D.N., Hickey A.J. The guinea pig as a model of infectious diseases // Comparative medicine. – 2008. – Vol. 58, No 4. – P. 324-340.
  35. Schreider J. P., Hutchens J. O. Morphology of the guinea pig respiratory tract // The Anatomical Record. – 1980. – Vol. 196, No 3. – P. 313-321. DOI: 10.1002/ar.1091960307.
  36. Yarto-Jaramillo E. Respiratory system anatomy, physiology, and disease: guinea pigs and chinchillas // Veterinary Clinics: Exotic Animal Practice. – 2011. – Vol. 14, No 2. – P. 339-355. DOI: 10.1016/j.cvex.2011.03.008.
  37. Shomer N. H., Holcombe H., Harkness J. E. Biology and diseases of guinea pigs // Laboratory Animal Medicine. – Academic Press, 2015. – P. 247-283. DOI: 10.1016/B978-0-12-409527-4.00006-7.
  38. Choi H.K., Finkbeiner W.E., Widdicombe J.H. A comparative study of mammalian tracheal mucous glands // Journal of anatomy. – 2000. – Vol. 197, No 3. – P. 361-372. DOI: 10.1046/j.1469-7580.2000.19730361.x.
  39. Canning B. J., Chou Y. Using guinea pigs in studies relevant to asthma and COPD // Pulmonary pharmacology & therapeutics. – 2008. – Vol. 21, No 5. – P. 702-720. DOI: 10.1016/j.pupt.2008.01.004.
  40. Adriaensen D., Brouns I., Pintelon I., De Proost I., & Timmermans, J. P. Evidence for a role of neuroepithelial bodies as complex airway sensors: comparison with smooth muscle-associated airway receptors // Journal of Applied Physiology. – 2006. – Vol. 101, No 3. – P. 960-970. DOI: 10.1152/japplphysiol.00267.2006.
  41. Weichselbaum M., Sparrow M.P., Hamilton E.J., Thompson P.J., Knight D.A. A confocal microscopic study of solitary pulmonary neuroendocrine cells in human airway epithelium // Respiratory Research. – 2005. – Vol. 6, No 1. – P. 115. DOI: 10.1186/1465-9921-6-115.
  42. Крышень К.Л., Кательникова А.Е., Мужикян А.А., Макарова М.Н., Макаров В.Г. Регуляторные и методические аспекты изучения аллергизирующих свойств новых лекарственных средств на этапе доклинических исследований // Ведомости Научного центра экспертизы средств медицинского применения. – 2018. – Т. 8. – №. 1. [Kryshen' K.L., Katel'nikova A.E., Muzhikyan A.A., Makarova M.N., Makarov V.G. Regulyatornye i metodicheskie aspekty izucheniya allergiziruyushchih svojstv novyh lekarstvennyh sredstv na etape doklinicheskih issledovanij // Vedomosti Nauchnogo centra ekspertizy sredstv medicinskogo primeneniya. – 2018. – T. 8. – №. 1. (In Russ.)]
  43. Ellis J.L., Undem B.J. Role of peptidoleukotrienes in capsaicin‐sensitive sensory fibre‐mediated responses in guinea‐pig airways // The Journal of Physiology. – 1991. – Vol. 436, No 1. – P. 469-484. DOI: 10.1113/jphysiol.1991.sp018561.
  44. Canning B.J., Mori N., Mazzone S.B. Vagal afferent nerves regulating the cough reflex // Respiratory physiology & neurobiology. – 2006. – Vol. 152, No 3. – P. 223-242. DOI: 10.1016/j.resp.2006.03.001.
  45. Ito K., Sawada Y., Kamei J., Misawa M., Iga T. Toxicodynamic analysis of cough and inflammatory reactions by angiotensin-converting enzyme inhibitors in guinea pig // Journal of Pharmacology and Experimental Therapeutics. – 1995. – Vol. 275, No 2. – P. 920-925.
  46. Johnson-Delaney C. A., Orosz S. E. Rabbit respiratory system: clinical anatomy, physiology and disease // Veterinary Clinics: Exotic Animal Practice. – 2011. – Vol. 14, No 2. – P. 257-266. DOI: 10.1016/j.cvex.2011.03.002.
  47. Kozma C., Macklin W., Cummins L.M., Mauer R. Anatomy, physiology and biochemistry of the rabbit // The biology of the laboratory rabbit. – 1974. – Vol. 12, No 1. – P. 55-58.
  48. Kamaruzaman N.A., Kardia E., Kamaldin N.A., Latahir A.Z., Yahaya B.H. The rabbit as a model for studying lung disease and stem cell therapy // BioMed research international. – 2013. – Vol. 2013. DOI: 10.1155/2013/691830.
  49. Hilding D.A., Hilding A.C. Electron microscopic observations of nasal epithelium after experimental alteration of airflow // Annals of Otology, Rhinology & Laryngology. – 1970. – Vol. 79, No 3. – P. 451-460. DOI: 10.1177/000348947007900304.
  50. Ramchandani R., Bates J.H.T., Shen X., Suki,B., Tepper R.S. Airway branching morphology of mature and immature rabbit lungs // Journal of Applied Physiology. – 2001. – Vol. 90, No 4. – P. 1584-1592. DOI: 10.1152/jappl.2001.90.4.1584.
  51. Hislop A., Muir D. C.F., Jacobsen M., Simon G., Reid L. Postnatal growth and function of the pre-acinar airways // Thorax. – 1972. – Vol. 27, No 3. – P. 265-274.
  52. Keir S., Page C. The rabbit as a model to study asthma and other lung diseases // Pulmonary pharmacology & therapeutics. – 2008. – Vol. 21, No 5. – P. 721-730. DOI: 10.1016/j.pupt.2008.01.005.
  53. Thorning D.R., Howard M.L., Hudson L.D., & Schumacher R.L. Pulmonary responses to smoke inhalation: Morphologic changes in rabbits exposed to pine wood smoke // Human pathology. – 1982. – Vol. 13, No 4. – P. 355-364. DOI: 10.1016/s0046-8177(82)80225-6.
  54. Meurens F., Summerfield A., Nauwynck H., Saif L., Gerdts V. The pig: a model for human infectious diseases // Trends in microbiology. – 2012. – Vol. 20, No 1. – P. 50-57. DOI: 10.1016/j.tim.2011.11.002.
  55. Elahi S., Holmstrom J., Gerdts V. The benefits of using diverse animal models for studying pertussis // Trends in microbiology. – 2007. – Vol. 15, No 10. – P. 462-468. DOI: 10.1016/j.tim.2007.09.003.
  56. Khatri M., Dwivedi V., Krakowka S., Manickam C., Ali A., Wang L., Lee C.W. Swine influenza H1N1 virus induces acute inflammatory immune responses in pig lungs: a potential animal model for human H1N1 influenza virus // Journal of virology. – 2010. – Vol. 84, No 21. – P. 11210-11218. DOI: 10.1128/JVI.01211-10.
  57. Gil O., Díaz I., Vilaplana C., Tapia G., Díaz J., Fort M., Domingo M. Granuloma encapsulation is a key factor for containing tuberculosis infection in minipigs // PloS one. – 2010. – Vol. 5, No 4. – P. e10030. DOI: 10.1371/journal.pone.0010030.
  58. Luna C.M., Sibila O., Agusti C., Torres, A. Animal models of ventilator-associated pneumonia // European Respiratory Journal. – 2009. – Vol. 33, No 1. – P. 182-188. DOI: 10.1183/09031936.00046308.
  59. Identification and Prevention of the Sick or Compromised Nursery Pig // Pork information Gateway. 2014. – URL: https://porkgateway.org/wp-content/uploads/2015/07/identification-of-the-sick-or-compromised-pig1.pdf (дата обращения 10.2020).
  60. Horter D. C., Yoon K. J., Zimmerman J. J. A review of porcine tonsils in immunity and disease //Animal health research reviews. – 2003. – Т. 4. – №. 2. – С. 143-155. DOI: 10.1079/ahr200358.
  61. Nakakuki S. Bronchial tree, lobular division and blood vessels of the pig lung // Journal of Veterinary Medical Science. – 1994. – Vol. 56, No 4. – P. 685-689. DOI: 10.1292/jvms.56.685.
  62. Judge E.P., Hughes J.L., Egan J.J., Maguire M., Molloy E.L., O’Dea S. Anatomy and bronchoscopy of the porcine lung. A model for translational respiratory medicine //American journal of respiratory cell and molecular biology. – 2014. – Vol. 51, No 3. – P. 334-343. DOI: 10.1165/rcmb.2017-0096ST.
  63. Kurmi O.P., Semple S., Simkhada P., Smith W.C.S., Ayres J.G. COPD and chronic bronchitis risk of indoor air pollution from solid fuel: a systematic review and meta-analysis // Thorax. – 2010. – Vol. 65, No 3. – P. 221-228. DOI: 10.1136/thx.2009.124644.
  64. Choi W.I., Syrkina O., Kwon K., Quinn D.A., Hales C.A. JNK activation is responsible for mucus overproduction in smoke inhalation injury // Respiratory research. – 2010. – Vol. 11, No 1. – P. 1-8. DOI: 10.1186/1465-9921-11-172.
  65. Meyerholz D. K. Lessons learned from the cystic fibrosis pig // Theriogenology. – 2016. – Vol. 86, No 1. – P. 427-432. DOI: 10.1016/j.theriogenology.2016.04.057.
  66. Olivier A.K., Gibson-Corley K.N., Meyerholz D.K. Animal models of gastrointestinal and liver diseases. Animal models of cystic fibrosis: gastrointestinal, pancreatic, and hepatobiliary disease and pathophysiology // American Journal of Physiology-Gastrointestinal and Liver Physiology. – 2015. – Vol. 308, No 6. – P. G459-G471. DOI: 10.1152/ajpgi.00146.2014.
  67. Rogers C.S., Stoltz D.A., Meyerholz D.K., Ostedgaard L.S., Rokhlina T., Taft P.J., Kabel A. C. Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs // Science. – 2008. – Vol. 321, No 5897. – P. 1837-1841. DOI: 10.1126/science.1163600.
  68. Stoltz D.A., Meyerholz D.K., Pezzulo A.A., Ramachandran S., Rogan M.P., Davis G.J., Nelson G.A. Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth // Science translational medicine. – 2010. – Vol. 2, No 29. – P. 29ra31-29ra31. DOI: 10.1126/scitranslmed.3000928.
  69. Kimmel E.C., Still K.R. Acute lung injury, acute respiratory distress syndrome and inhalation injury: an overview // Drug and chemical toxicology. – 1999. – Vol. 22, No 1. – P. 91-128. DOI: 10.3109/01480549909029726
  70. Choi W.I., Syrkina O., Kwon K., Quinn D.A., Hales C.A. JNK activation is responsible for mucus overproduction in smoke inhalation injury // Respiratory research. – 2010. – Vol. 11, No 1. – P. 1-8. DOI: 10.1186/1465-9921-11-172
  71. Hecht S.S. Carcinogenicity studies of inhaled cigarette smoke in laboratory animals: old and new // Carcinogenesis. – 2005. – Vol. 26, No 9. – P. 1488-1492. DOI: 10.1093/carcin/bgi148.
  72. Zwicker G.M., Filipy R.E., Park J.F., Loscutoff S.M., Ragan H.A., Stevens D.L. Clinical and pathological effects of cigarette smoke exposure in beagle dogs // Archives of pathology & laboratory medicine. – 1978. – Vol. 102, No 12. – P. 623
  73. Takenaka S., Heini A., Ritter B., Heyder, J. Morphometric evaluation of bronchial glands of beagle dogs // Toxicology letters. – 1996. – Vol. 88, No 1-3. – P. 279-285. DOI: 10.1016/0378-4274(96)03750-2.
  74. Liang G.B., He Z.H. Animal models of emphysema //Chinese Medical Journal. – 2019. – Vol. 132, No 20. – P. 2465. DOI: 10.1097/CM9.0000000000000469.
  75. Radostits O.M., Mayhew, I.G., Houston D.M. Veterinary clinical examination and diagnosis. – WB Saunders, 2000. – 800 p.

You may be interested