Specific techniques of bronchoalveolar lavage collecting from laboratory animals

A.A. Matchinin, 
A.E. Katelnikova, ORCID 0000-0003-3203-9869,
K.L. Kryshen´, ORCID 0000-0003-1451-7716

Institute of Preclinical Research Ltd.

188663, Russia, Leningradskaya reg., Vsevolozhskiy district, Kuzmolovskiy t.s., Zavodskaya st. 3–245

E-mail: matichin.aa@doclinika.ru


Respiratory organs provide the gas exchange function in which various pathogenic substance and microorganisms causing respiratory diseases can enter the organism and settle in the epithelial surface of lungs and airway tracts. Therefore, diseases of organs respiratory system of various etiologies are most common and affect all mammals. In this regard there is a need to develop drugs for a treatment of respiratory diseases. The bronchoalveolar lavage is the traditional invasive technique allowing to collect lavage from animals’ airway tracts and lungs for diagnosis of diseases in veterinary or for researching respiratory toxicity of test medicines in preclinical studies. The technique of bronchoalveolar lavage is frequently used because this procedure represents a simple and cost-effective method and makes it possible to minimize physical damaging of animal for subsequent postoperative recovery, if necessary. The advantage of bronchoalveolar lavage fluid analysis is that one can pick up early indicators of biochemical, cytology and microbiology changes leading to later morphological changes in a disease process. It is important to correctly perform the procedure of sampling, processing and analyzing of bronchoalveolar lavage fluid, i.e.: any damage to the lungs and respiratory tracts must be avoided; to carry out manipulations with samples of flushing of the respiratory system as soon as possible and in a cooled state. This procedure is based on washing of lungs and respiratory tracts with a isotonic wash fluid, but it has sequence of specificities that depend on the animal species and the purpose of collecting bronchoalvolar lavage: the choice of an open or closed method, wash fluid, its volume and number of wash fluid recovery and other specificities. In current review various specific techniques of bronchoalveolar lavage collecting have been considered, which should be taken into account when achieving the task, as well as what components included in the bronchoalveolar lavage can be studied.

Full text avaliable in Russain only


  1. Zinoviev S.V., Seliverstov S.S., Tseluyko S.S., Gorbunov M.M., Semenov D.A. Morphological characteristics of open bronchoalveolar lavage rat lung. Amur Medical Journal. 2015, 4(12). P. 103-108.
  2. Van Hoecke L., Job E.R., Saelens X., Roose K. Bronchoalveolar lavage of murine lungs to analyze inflammatory cell infiltration. Journal of Visualized Experiments. 2017, (123). 8 p. DOI:10.3791/55398
  3. Уразова Г.Е. Учебное пособие «Принципы обследования больных с патологией бронхолегочной системы» для самостоятельной внеаудиторной работы студентов 6 курса. ФГБОУ ВО Амурская государственная медицинская академия. 2019. 36 с. [Urazova G.E. Uchebnoe posobie «Printsipy obsledovaniya bol'nykh s patologiei bronkholegochnoi sistemY» dlya samostoyatel'noi vneauditornoi raboty studentov 6 kursa. FGBOU VO Amurskaya gosudarstvennaya meditsinskaya akademiya. 2019. 36 p. (In Russ.)]
  4. Использование бронхоальвеолярного лаважа в диагностике интерстициальных заболеваний легких: клинические рекомендации американского торокального общества. Клинические рекомендации. Пульмонология. 2012, 4. С. 17-27. [Bronchoalveolar lavage for diagnosis of interstitial lung diseases: guidelines of American Thoracic Society. Pul'monologiya. 2012, 4. P. 17-27. (In Russ.)].
  5. Henderson R. F. Use of bronchoalveolar lavage to detect respiratory tract toxicity of inhaled material. Experimental and Toxicologic Pathology. 2005, 57. P. 155-159. DOI:10.1016/j.etp.2005.05.004
  6. Alba-Loureiro T. C., Martins E.F., Miyasaka C.K., Lopes L.R., Landgraf R.G., Jancar S., Curi R., Sannomiya P. Evidence that arachidonic acid derived from neutrophils and prostaglandin E2 are associated with the induction of acute lung inflammation by lipopolysaccharide of Escherichia coli. Inflammation Research. 2004, 53(12). P. 658-663. DOI: 10.1007/s00011-004-1308-7
  7. Yang S., Yu Z., Wang L., Yuan T., Wang X., Zhang X., Wang J., Lv Y., Du G. The natural product bergenin ameliorates lipopolysaccharide-induced acute lung injury by inhibiting NF-kappaB activation. Journal of ethnopharmacology. 2017, 200. P. 147-155. DOI: 10.1016/j.jep.2017.02.013
  8. Thatcher T.H., Hsiao H.M., Pinner E., Laudon M., Pollock S.J., Sime P.J., Phipps R.P. Neu-164 and Neu-107, two novel antioxidant and anti-myeloperoxidase compounds, inhibit acute cigarette smoke-induced lung inflammation. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2013, 305(2). P. L165-L174. DOI: 10.1152/ajplung.00036.2013
  9. Shirole R. L., Shirole N. L., Saraf M. N. Embelia ribes ameliorates lipopolysaccharide-induced acute respiratory distress syndrome. Journal of ethnopharmacology. 2015, 168. P. 356-363. DOI: 10.1016/j.jep.2015.03.009
  10. Ye Y., Mo S., Feng W., Ye X., Shu X., Guan Y., Huang J., Wang J. The ethanol extract of Involcucrum castaneae ameliorated ovalbumin-induced airway inflammation and smooth muscle thickening in guinea pigs. Journal of ethnopharmacology. 2019, 230. P. 9-19. DOI: 10.1016/j.jep.2018.10.027
  11. Sciuto A. M. Assessment of early acute lung injury in rodents exposed to phosgene. Archives of toxicology. 1998, 72(5). P. 283-288. DOI: 10.1007/s002040050503
  12. Seibel J., Pergola C., Werz O., Kryshen K., Wosikowski K., Lehner M.D., Haunschild J. Bronchipret® syrup containing thyme and ivy extracts suppresses bronchoalveolar inflammation and goblet cell hyperplasia in experimental bronchoalveolitis. Phytomedicine. 2015, 22 (13). P. 1172-1177. DOI: 10.1016/j.phymed.2015.09.001
  13. Lunn J.A., Martin P., Zaki S., Malik R. Pneumonia due to Mycobacterium abscessus in two domestic ferrets (Mustelo putorius furo). Australian veterinary journal. 2005, 83(9). P. 542-546. DOI: 10.1111/j.1751-0813.2005.tb13325.x
  14. Vaux-Peretz F., Meignier B. Comparison of lung histopathology and bronchoalveolar lavage cytology in mice and cotton rats infected with respiratory syncytial virus. Vaccine. 1990, 8(6). P. 543-548. DOI: 10.1016/0264-410X(90)90005-7
  15. Jiang Q., Yi M., Guo Q., Wang C., Wang H., Meng S., Liu C., Fu Y., Ji H., Chen T. Protective effects of polydatin on lipopolysaccharide-induced acute lung injury through TLR4-MyD88-NF-κB pathway. International immunopharmacology. 2015, 29(2). P. 370-376. DOI: 10.1016/j.intimp.2015.10.027
  16. Yu P.J., Wan L.M., Wan S.H., Chen W.Y., Xie H., Meng D.M., Zhang J.J., Xiao X.L. Standardized myrtol attenuates lipopolysaccharide induced acute lung injury in mice. Pharmaceutical biology. 2016, 54(12). P. 3211-3216. DOI: 10.1080/13880209.2016.1216132
  17. Wan L., Meng D., Wang H., Wan S., Jiang S., Huang S., Wei L., Yu P. Preventive and therapeutic effects of thymol in a lipopolysaccharide-induced acute lung injury mice model. Inflammation. 2018, 41(1). P. 183-192. DOI: 10.1007/s10753-017-0676-4
  18. Sterner-Kock A., Kock M., Braun R., Hyde D.M. Ozone-induced epithelial injury in the ferret is similar to nonhuman primates. American journal of respiratory and critical care medicine. 2000, 162(3). P. 1152-1156. DOI: 10.1164/ajrccm.162.3.9812153
  19. John G., Kohse K., Orasche J., Reda A., Schnelle-Kreis J., Zimmermann R., Schmid O., Eickelberg O., Yildirim A. Ö. The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models. Clinical science. 2013, 126(3). P. 207-221. DOI: 10.1042/CS20130117
  20. Seibel J., Kryshen K., Pongrácz J. E., Lehner M.D. In vivo and in vitro investigation of anti-inflammatory and mucus-regulatory activities of a fixed combination of thyme and primula extracts. Pulmonary pharmacology & therapeutics. 2018, 51. P. 10-17. DOI: 10.1016/j.pupt.2018.04.009
  21. von Bismarck P., Winoto-Morbach S., Herzberg M., Uhlig U., Schütze S., Lucius R., Krause M.F. IKK NBD peptide inhibits LPS induced pulmonary inflammation and alters sphingolipid metabolism in a murine model. Pulmonary pharmacology & therapeutics. 2012, 25(3). P. 228-235. DOI: 10.1016/j.pupt.2012.03.002
  22. Sun F., Xiao G., Qu Z. Murine bronchoalveolar lavage. Bio-protocol. 2017, 7(10). 5 p. DOI: 10.21769/BioProtoc.2287
  23. Van Helden H. P. M., Kuijpers W.C., Steenvoorden D., Go C., Bruijnzeel P.L. Intratracheal aerosolization of endotoxin (LPS) in the rat: a comprehensive animal model to study adult (acute) respiratory distress syndrome. Experimental lung research. 1997, 23(4). P. 297-316. DOI: 10.3109/01902149709039228
  24. Kodavanti U. P. Respiratory toxicity biomarkers. Biomarkers in Toxicology. Academic Press, 2014. P. 217-239. DOI: 10.1016/B978-0-12-404630-6.00012-9
  25. Lopez A., Prior M., Yong S., Albassam M., Lillie L. E. Biochemical and cytologic alterations in the respiratory tract of rats exposed for 4 hours to hydrogen sulfide. Fundamental and Applied Toxicology. 1987, 9(4). P. 753-762. DOI: 10.1016/0272-0590(87)90182-5
  26. Mancinelli E. Respiratory disease in rabbits. In Practice. 2019, 41(3). P. 121-129.
  27. Chen J., Wang J.B., Yu C.H., Chen L.Q., Xu P., Yu W.Y. Total flavonoids of Mosla scabra leaves attenuates lipopolysaccharide-induced acute lung injury via down-regulation of inflammatory signaling in mice. Journal of ethnopharmacology. 2013, 148(3). P. 835-841. DOI: 10.1016/j.jep.2013.05.020
  28. Lee J.W., Seo K.H., Ryu H.W., Yuk H.J., Park H.A., Lim Y., Ahn K.S., Oh S.R. Anti-inflammatory effect of stem bark of Paulownia tomentosa Steud. in lipopolysaccharide (LPS)-stimulated RAW264. 7 macrophages and LPS-induced murine model of acute lung injury. Journal of ethnopharmacology. 2018, 210. P. 23-30. DOI: 10.1016/j.jep.2017.08.028
  29. Wan L.M., Tan L., Wang Z.R., Liu S.X., Wang Y.L., Liang S.Y., Zhong J.B., Lin H.S. Preventive and therapeutic effects of Danhong injection on lipopolysaccharide induced acute lung injury in mice. Journal of ethnopharmacology. 2013, 149(1). P. 352-359. DOI: 10.1016/j.jep.2013.06.048
  30. Yu W.W, Lu Z., Zhang H., Kang Y.H., Mao Y., Wang H.H., Ge W.H., Shi L.Y. Anti-inflammatory and protective properties of daphnetin in endotoxin-induced lung injury. Journal of agricultural and food chemistry. 2014, 62(51). P. 12315-12325. DOI: 10.1021/jf503667v
  31. Zhang X., Sun C.Y., Zhang Y.B., Guo H.Z., Feng X.X., Peng S.Z., Yuan J., Zheng R.B., Chen W.P., Su Z.R., Huang X.D. Kegan Liyan oral liquid ameliorates lipopolysaccharide-induced acute lung injury through inhibition of TLR4-mediated NF-κB signaling pathway and MMP-9 expression. Journal of ethnopharmacology. 2016, 186. P. 91-102. DOI: 10.1016/j.jep.2016.03.057
  32. Rutigliano J.A., Doherty P.C., Franks J., Morris M.Y., Reynolds C., Thomas P.G. Screening monoclonal antibodies for cross-reactivity in the ferret model of influenza infection. Journal of immunological methods. 2008, 336(1). P. 71-77. DOI: 10.1016/j.jim.2008.04.003
  33. Маматова К. К., Белов Г. В. Показатели бронхоальвеолярного смыва при моделировании острого посттрансфузионного повреждения легких. Вестник современной клинической медицины. 2014, 7(5). С. 68-72. [Mamatova K.K., Belov G.V. Profiles of bronchoalveolar lavage fluid in modeling of transfusion-related acute lung injury. Vestnik sovremennoi klinicheskoi meditsiny. 2014, 7(5). P. 68-72 (In Russian)]
  34. Sant B., Kumar P., Soni A.K., Kannan G.M., Nagar D.P., Prasad G.B.K.S., Bhaskar A.S.B. Neutrophil mediated inflammatory lung damage following single Sub lethal inhalation exposure to plant protein toxin abrin in mice. Experimental lung research. 2019, 45(5-6). P. 135-150. DOI: 10.1080/01902148.2019.1620898

You may be interested