Diet-Induced Models Of Metabolic Disorders. Report 3: Experimental Diabetes

DOI: 10.29296/2618723X-2018-03-08

М. N. Makarova, Director, V. G. Makarov, Doctor of Medicine, Professor, Deputy dir. of science JSC «Research-and-manufacturing company «Houm оf Pharmacy» JSC «Research-and-manufacturing company «Houm оf Pharmacy», 188663, Russia, Leningradskiy region, Vsevolozhskiy district, Kuzmolovskiy, st. Zavodskaya, 3. b. 245 Е-mail: [email protected]


Keywords: type 2 diabetes diet-induced model

For citation:

Makarova М.N., Makarov V.G. Diet-Induced Models Of Metabolic Disorders. Report 3: Experimental Diabetes. Laboratory Animals for Science. 2018; 3. https://doi.org/10.29296/2618723X-2018-03-08

Abstract

The increase in the incidence of diabetes mellitus (DM), mainly type 2 diabetes, dangerous chronic complications due to hyperglycemia (diabetic nephropathy, diabetic retinopathy, diabetic foot, diabetic neuropathy, atherosclerosis, etc.), dictates the need for extensive preclinical studies to find effective measures of prevention and treatment. This requires experimental models on animals most sensitive to the development of DM, adequate methods of inducing DM and evaluation criteria. As a result of the analysis of modern literature it was shown that rodents (mainly mice, including wild breeds) and mini-pigs are best suited for modeling type 2 diabetes. The closest in etiology and development mechanisms to type 2 DM in humans are diet-induced models, among which the most effective are diets enriched with sucrose or fructose. To accelerate the development of diet-induced type 2 DM, it is recommended to use small, individually selected doses of streptozotocin, allowing not to destroy completely the beta cells of the pancreas, as is the case with type 1 DM. The main criteria for the development of diabetes and the effectiveness of therapeutic and preventive measures are the content of glucose, insulin and glycosylated hemoglobin in blood plasma, the number of beta cells in the Islands of the pancreas, the area of distribution of the sugar curve, insulin resistance index, as well as histology and histochemistry of the pancreas and other organs.

References

  1. Dedov I.I., Shestakova M.V., Vikulova O.K. E`pidemiologiya saharnogo diabeta v Rossiyskoy Federacii: kliniko-statisticheskiy analiz, po dannym Federal`nogo registra saharnogo diabeta. Saharnyy diabet. 2017; 20 (1): 13–41. doi: 10.14341/DM8664.
  2. Smolyanskiy B.L., Liflyandskiy V.G. Saharnyy diabet. M.: OLMA Media Grupp, 2009. 640 s.
  3. Kohen Avramoglu R., Laplante M.A., Le Quang K., Deshaies Y., Després J.P., Larose E., Mathieu P., Poirier P., Perusse L., Vohl M.C., Sweeney G., Ylä-Herttuala S., Laakso M., Uusitupa M., Marette A. The Genetic and Metabolic Determinants of Cardiovascular Complications in Type 2 Diabetes: Recent Insights from Animal Models and Clinical Investigations. Can. J. Diabetes. 2013 Oct;37(5):351–8. doi: 10.1016/j.jcjd.2013.08.262.
  4. Poudyal H., Panchal S., Brown L. Comparison of purple carrot juice and β-carotene in a high-carbohydrate, high-fat diet-fed rat model of the metabolic syndrome. British Journal of Nutrition, 2010, Vol. 104, 9: 1322–32.
  5. Tominaga A., Ishizaki N., Naruse Y., Kitakoji H., Yamamura Y. Repeated application of low-frequency electroacupuncture improves high-fructose diet-induced insulin resistance in rats. Acupunct. Med. 2011 Dec; 29 (4): 276–83. doi: 10.1136/acupmed-2011-010006.
  6. Xi S., Yin W., Wang Z., Kusunoki M., Lian X., Koike T., Fan J., Zhang Q. A minipig model of high-fat/high-sucrose diet-induced diabetes and atherosclerosis Int. J. Exp. Path. (2004), 85, 223–31.
  7. Kluge R., Scherneck S., Schormann A., Joost H.-G. Pathophysiology and Genetics of Obesity and Diabetes in the New Zealand Obese Mouse: A Model of the Human Metabolic Syndrome. In: Animal Models in Diabetes Research. Edited by Hans-Georg Joost, Hadi Al-Hasani, Annette Schürmann. Springer Science+Business Media, LLC 2012: 59–73.
  8. Kim H.J., Kim S., Lee A.Y., Jang Y., Davaadamdin O., Hong S.-H., Kim J.S., Cho M.-H. The Effects of Gymnema sylvestre in High-Fat Diet-Induced Metabolic Disorders. Amer. J. Chin. Med., 2017. Vol. 45, 4: 1–20. doi: 10.1142/S0192415X17500434.
  9. Zhao S., Chu Y., Zhang C.,Lin Y., Xu K., Yang P., Fan J., Liu E. Diet-induced central obesity and insulin resistance in rabbits. J Anim Physiol Anim Nutr (Berl). 2008 Feb; 92 (1): 105–11. doi: 10.1111/j.1439-0396.2007.00723.x.
  10. Liu Y., Wang Z.B., Yin W.D., Li Q.K., Cai M.B., Yu J., Li H.G., Zhang C., Zu X.H. Preventive effect of Ibrolipim on suppressing lipid accumulation and increasing lipoprotein lipase in the kidneys of diet-induced diabetic minipigs. Lipids in Health and Disease 2011, 10:117.
  11. Joost H.-G. Al-Hasani H., Schurmann A. (eds.). Animal Models in Diabetes Research, Methods in Molecular Biology, vol. 933, DOI 10.1007/978-1-62703-068-7_6, © Springer Science+Business Media, LLC. 2012: 325.
  12. Suckow M.A., Stevens K.A., Wilson R.P. (eds.). The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents. Academic Press, Elsevier. 2012: 1268.
  13. Koopmans S.J., Schurmann T. Considerations on pig models for appetite, metabolic syndrome and obese type 2 diabetes: From food intake to metabolic disease. Eur J Pharmacol. 2015 Jul 15; 759: 231–9. doi: 10.1016/j.ejphar.2015.03.044.
  14. Wu K.K., Huan Y. Diabetic atherosclerosis mouse models. Atherosclerosis. 2007; 191: 241–9.
  15. Molnar J., Yu S., Mzhavia N., Pau C., Chereshnev I., Dansky H.M. Diabetes induces endothelial dysfunction but does not increase neointimal formation in high-fat diet fed C57BL/6J mice. Circ. Res., 2005;96 (11): 1178–84. doi: 10.1161/01.RES.0000168634.74330.ed.
  16. Konda V.R., Desai A., Darland G., Grayson N., Bland J.S. KDT501, a derivative from hops, normalizes glucose metabolism and body weight in rodent models of diabetes. PLoS One. 2014 Jan 30;9 (1): e87848. 11 r. doi: 10.1371/journal.pone.0087848.
  17. Kim J.H., Saxton A.M. The TALLYHO Mouse as a Model of Human Type 2 Diabetes In: H.-G. Joost et al. (eds.), Animal Models in Diabetes Research, Methods in Molecular Biology, vol. 933, DOI 10.1007/978-1-62703-068-7_6, © Springer Science+Business Media, LLC. 2012: 74–87.
  18. Arias-Mutis O.J., Marrachelli V.G., Ruiz-Saurí A., Alberola A., Morales J.M., Such-Miquel L., Monleon D., Chorro F.J., Such L., Zarzoso M. Development and characterization of an experimental model of diet-induced metabolic syndrome in rabbit. PLOS ONE, |May 23, 2017: 18. doi: 10.1371/journal.pone.0178315. eCollection 2017.
  19. Beguinot F., Nigro C. Measurement of Glucose Homeostasis In Vivo: Glucose and Insulin Tolerance Tests In: H.-G. Joost et al. (eds.), Animal Models in Diabetes Research, Methods in Molecular Biology, vol. 933, DOI 10.1007/978-1-62703-068-7_6, © Springer Science+Business Media, LLC. 2012: 219–26.
  20. Preedy V.R. (editor). Diabetes. Oxidative Stress and Dietary Antioxidants. Elsevier Inc., 2014: 269.
  21. Samout N., Ettaya A., Bouzenna H., Ncib S., Elfeki A., Hfaiedh N. Beneficial effects of Plantago albicans on high-fat diet-induced obesity in rats. Biomed. Pharmacother., 2016 Dec;84:1768–75. doi: 10.1016/j.biopha.2016.10.105.
  22. Amri Z., Ghorbel A., Turki M., Akrout F.M., Ayadi F., Elfeki A., Hammami M. Effect of pomegranate extracts on brain antioxidant markers and cholinesterase activity in high fat-high fructose diet induced obesity in rat model. BMC Complement. Altern. Med., 2017. Jun 27; 17 (1): 339. 9 p. doi: 10.1186/s12906-017-1842-9.
  23. Eppel G.A., Armitage J.A., Eikelis N., Head G.A., Evans R.G. Progression of cardiovascular and endocrine dysfunction in a rabbit model of obesity. Hypertens. Res., 2013 Jul; 36 (7): 588–95. doi: 10.1038/hr.2013.2.
  24. Zheng H., Zhang C., Yang W., Wang Y., Lin Y., Yang P., Yu Q., Fan J., Liu E. Fat and Cholesterol Diet Induced Lipid Metabolic Disorders and Insulin Resistance in Rabbit. Exp Clin Endocrinol Diabetes, 2009; 117: 400–05. DOI: 10.1055/s-0028-1102918.

You may be interested